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A bstract

My dissertation is w ritten in the fields of finance and econometrics. The research 

agenda starts with a Monte Carlo study, one which reveals structural limitations of 

the standard square-root model in fitting the term  structure of interest rates and the 

finite sample inefficiency of simulation-based estim ators in empirical finance. The 

discover}'’ of these limitations naturally leads to the  two m ajor contributions of my 

thesis research. One is to develop new term  structure models—ones that have discrete 

jum ps or regime shifts—that are in line with the general equilibrium no-arbitrage 

pricing approach. The other significant contribution is to construct highly efficient 

econometric methods to estim ate jump-diffusion and stochastic volatility processes, 

by providing closed form solutions to the conditional moments of the underlying 

point-in-tim e process or the integrated tim e series. The m ajor findings of the re­

search are these: the jump-augm ented or regime-augmented yield curves are much 

more flexible in fitting the observed term  structure, and the conditional-moment- 

based econometric estimators are statistically reliable and computationally efficient. 

W hat is gained from these new modeling and estim ation strategies is that one may 

adequately capture the rich volatility pattern  em bedded in most financial time series 

data.
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Chapter 1

Introduction

My dissertation consists of four papers written in the fields of finance and econo­

metrics. These essays develop new term  structure models with discrete jum ps or 

regime shifts and highly efficient econometric methods to estim ate jump-diffusion 

and stochastic volatility processes.

The following chapter performs a  M onte Carlo study on Efficient Method of Mo­

ments (EMM) for a continuous tim e square-root model and then compares the results 

with maximum-likelihood estim ators. A convenient Poisson-mixing-Gamma formula 

is implemented for Maximum Likelihood Estim ation (MLE), and the exact solu­

tions of the first two moments are used for Quasi-Maximum Likelihood Estimation 

(QMLE). The finite sample efficiency of EMM increases with the sample size, as the 

seminonparametric score generator (SNP) captures more of the distributional fea­

tures. The overrejection bias of EMM decreases with the sample size, and the power 

of detecting misspecification is ultim ately  one. We also find tha t the standard square- 

root model is too restrictive in fitting the  term  structure volatility, and this finding 

suggests the jump-diffusion and regime switching methodologies subsequently being 

used in Chapters 3 and 4. Similarly, the slow convergence rate of the simulation-based 

estim ator motivates the conditional m oment-based estim ation strategies developed in 

Chapters 3 and 5.

The th ird  chapter develops a  M ultivariate Weighted Nonlinear Least Square es­

tim ator for a jump-diffusion interest ra te  model (MWNLS-JD), which also adm its 

a  closed-form solution for bond prices under an equilibrium no-arbitrage argument. 

The instantaneous interest ra te  is m odeled as a m ixture of a continuous square-root

1
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diffusion and a discrete Poisson jum p process, where the jum p rate or am plitude can 

be constants, state-dependent functions, or independent random variables. Using 

Ito;s formula, one can analytically derive the first four conditional moments, which 

form the basis of the MWNLS-JD estim ator. The availability of closed-form solu­

tions reduces the com putational tim e to only a few minutes. A diagnostic conditional 

moment test and a classical Lagrange m ultiplier test can also be constructed from 

the fitted moment conditions. The tim e series estimation of the short ra,te suggests 

that the jum p augmentation is statistically very significant and tha t the pure dif­

fusion process is strongly rejected. The cross-sectional evidence indicates th a t the 

jump-diffusion yield curves are much more flexible and can significantly reduce the 

pricing errors.

In Chapter 4, I explore the possibility tha t changes in economic regimes have 

im portant effects on the term  structure  of interest rates. An equilibrium model of 

the term structure is developed w ith both the underlying short-term  interest rate 

and the market price of risk being determ ined by latent regime-switching square-root 

processes. I provide analytical solutions for bond prices of different m aturity  and 

then estim ate the model via Efficient Method of Moments (EMM), using short and 

long-term interest rate data  from 1964-1995. Our empirical results show th a t a two- 

factor regime-switching model passes the EMM specification test, while standard term  

structure models (with up to three factors) are strongly rejected. The reprojection 

technique from EMM also indicates th a t only the preferred regime-switching model 

can mimic the observed conditional volatility and the correlation of the two interest 

rates. Further, we find th a t the key distinctions across regimes are the volatility of 

the short yield and the spread between the long and the short yields.

In Chapter 5, I extend the conditional moment estim ator developed in Chapter 

2 to the case of stochastic volatility diffusions. The analytical solutions of the first

2
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two conditional moments are derived for the integrated volatility process, which is 

approximated by the quadratic variation constructed from the high frequency returns. 

This in turn  allows for the construction of a  standard GMM estim ator in which we use 

both the prim ary and lag-augmented m oment conditions. We successfully implement 

this m ethod to a  variety of ultra-high frequency data, including foreign exchange 

rates and stock m arket index. Our empirical results and the simulation evidence 

both indicate th a t this new m ethod of estim ating stochastic volatility diffusions is 

highly reliable and accurate. Furtherm ore, its computational speed is much faster 

when compared w ith the com putational speeds of the other available methods, such 

as EMM and MCMC. One im portant extension of the method is to directly evaluate 

the option prices by exploiting the distributional features of the integrated volatility.

3
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Chapter 2

A M onte Carlo Studay for A  Square-Root 
Diffusion Process

'T h is chapter performs a Monte Carlo study on Efficient Method of Moments (EMM) 

for a  continuous tim e square-root model and compares the result with maximum 

likelihood estim ators. A convenient Poisson-mixing-Gamma formula is implemented 

for Maximum Likelihood Estim ation (MLE), and the exact first two moments are 

used for Quasi-Maximum Likelihood Estim ation (QMLE). The relative efficiency of 

EMM over MLE is increasing with the sample size, as the seminonparametric score 

generator (SNP) capturing more of the distribution feature. The contribution of 

this essay is to provide small sample evidence that the overrejection bias of EMM 

is decreasing with the sample size, and the power for detecting misspecification is 

ultim ately one.

2.1 Introduction

When estim ating a continuous tim e model in finance, one often faces the difficulty 

of partial observability. Usually the continuous time record is not available since the 

data is discretely sampled. A further complication is tha t the transitional density of 

the stochastic process does not always have a  closed-form solution. Due to the lack 

of a tractable likelihood function, much of the interest has turned to nonlikelihood- 

based approaches. The Generalized M ethod of Moments (GMM) by Hansen (1982) 

reduces the reliance on distribution assumptions by matching the empirical moments 

with the theoretical ones. The Sim ulated M ethod of Moments (GMM) in tim e series 

1The material o f this chapter also appears in Zhou (1999a).

4
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application (Ingram  and Lee 1991, Duffie and Singleton 1993) minimizes the reliance 

on distribution assumptions by m atching the empirical moments with the simulated 

ones. Both GMM and SMM are robust to the misspecification of likelihood functions, 

while retaining a param etric model to conduct simulation or projection. However, 

these m ethods of moments suffer from the ad hoc choice of moment conditions and 

m ust presume the existence of arbitrary  population moments. The chi-square speci­

fication test of the overidentifying restrictions is subject to severe overrejection bias 

(Hansen, Heaton, and Yaron 1996, Andersen and Sorenson 1996). The efficiency loss 

of param eter estim ates is closely related to the high cost in estim ating the weight­

ing m atrix, as the variance-covariance m atrix is typically heteroskedastic and serially 

correlated (Andersen and Sorenson 1996). The Wald test is also found to exceed its 

asym ptotic size due to the difficulty in estimating the residue spectral-density matrix 

(Burnside and Eichenbaum 1996).

The Efficient M ethod of Moments (EMM), introduced by Bansal, Gallant, Hussey, 

and Tauchen (1995) and Gallant and Tauchen (1996b), endogenously selects the 

moment conditions in the first step. A seminonparametric score generator (SNP) uses 

the Fourier-Hermite polynomial to approximate the underlying transitional density. 

As an orthogonal series estim ator, the SNP has a  fast uniform convergence, given 

the smoothness of the underlying distribution function. A suitable model selection 

criterion, e.g., the Schwartz’s Bayesian Information Criterion (BIG), is used to choose 

the  direction and complexity of the auxiliary model expansion. The second stage of 

EMM is simply an SMM type estim ator, minimizing the quasi-maximum likelihood 

score functions th a t are chosen appropriately in the first stage. Since the moment 

conditions are orthogonal, the weighting m atrix (i.e., the information m atrix from 

the quasi-m axim um  likelihood) should be nearly serially uncorrelated. Hence the 

asym ptotic variance estim ator approaches the minimum bound, and the param eter

5
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estim ates are asym ptotically as efficient as MLE. It is proven that for an ergodic 

stochastic system with partially observed data, the efficiency of EMM approaches 

th a t of MLE, as the num ber of moment conditions and the number of lags entering 

each moment increase with the sample size (Gallant and Long 1997). Another salient 

feature of EMM is the capability to detect a  misspecified structured model, if the 

auxiliary model is rich enough such that Hermite polynomial scores approximate the 

true scores fairly well (Tauchen 1996). Under correct specification of the m aintained 

model, the normalized objective function value converges in distribution to a chi- 

square distribution. Under misspecification, the unnormalized objection function 

converges almost surely to a constant. For particular choice of score generator, this 

constant may be zero and the chi-square test loses power against the alternative. If 

the data  generating process is adequately captured by a more flexible nonparametric 

score generator, the constant is positive and rejection of misspecification is almost 

certain.

Recent Monte Carlo studies of EMM documented significant efficiency gains of 

EMM over GMM (Andersen, Chung, and Sprenson 1999c), but with similar overre­

jection problems in specification tests (Chumacero 1997). In more analytical fashion, 

Gallant and Tauchen (1998a) show that EMM outperforms the conventional method 

of moments (CMM) for a representative class of econometric modeb. However, there 

is no universal theory regarding the efficiency of EMM versus that of CMM, and 

the comparison must be made case-by-case (Gallant and Tauchen 1998a). Therefore 

choosing EMM over QMLE (e.g., in Dai and Singleton (2000)) should be accompa­

nied by solid argument or Monte Carlo evidence. This chapter complements these 

comparative studies in several areas. First, the M onte Carlo setup is a continu­

ous tim e model, like many recent applications of EMM, which have focused on the 

stochastic differential equations. Second, we consider the relative efficiency of EMM

6
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with respect to asym ptotically efficient MLE and computationally efficient QMLE. 

Third, both blindfold and educated choice of moment conditions are examined, so as 

to best im itate the realistic approaches taken by researchers using EMM. The main 

contribution of this essay is to provide Monte Carlo evidence which shows tha t the 

overrejection bias converges to zero and tha t the probability of detecting misspecifi­

cation converges to one.

A square-root diffusion process (Cox, Ingersoll, and Ross 1985a) is chosen as the 

vehicle for conducting the Monte Carlo study. On the one hand, the CIR model is 

simple enough to give closed-form solutions for both the transitional density and the 

asset pricing formula. On the other hand, it is rich enough to generate a highly per­

sistent volatility and non-Gaussian error distribution. The square-root process seems 

to be a good starting point to model more complicated financial time series data. 

EMM estim ation of the interest rate diffusions is reported by Gallant and Tauchen 

(1998b), and the square-root model is firmly rejected. W ith a closed-form transitional 

density, the dynamic maximum likelihood estim ation was implemented for the two- 

factor CIR model (Pearson and Sun 1994, Duffie and Singleton 1997). Gibbons and 

Ramaswamy (1993) employed a GMM estim ator, using the stochastic Euler equa­

tions to generate the moment conditions. Their results favor the square-root model. 

The most recent interest in affine term  structure (Dai and Singleton 2000) can be 

viewed as an im m ediate extension of the m ultifactor square-root model. The CIR 

model also has an explicit marginal density in term s of the drift and volatility func­

tions, which motivated nonparametric specification test (A'it-Sahalia 1996b). Conley, 

Hansen, Luttm er, and Scheinkman (1997a) implemented a GMM estim ator for a 

subset of the param eters by exploiting the reversibility of stationary Markov chain. 

When the square-root model is rejected, a critical issue is to understand whether the 

rejection comes from the intrinsic modeling inadequacy or from the overrejection bias

7
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in finite samples.

The remaining sections are organized in the  following way: Section 2.2 discusses 

some properties of the square-root model and characterizes the likelihood function 

for MLE; Section 2.3 introduces the Efficient Method of Moments estimator; Section

2.4 designs the Monte Carlo experiment and suggests the benchmark model choice; 

Section 2.5 reports the m ajor findings; and Section 2.6 concludes.

2.2 Maximum Likelihood Estimation

This section defines a maximum likelihood estim ator for the square-root model, based 

on a Poisson-m'ixing-Gamma characterization of the likelihood function. A quasi­

maximum likelihood estim ator is also available with analytical solutions to the first 

two conditional moments.

2.2.1 Probabilistic Solution to Square-Root M odel

It is a well-known result tha t the square-root model,

drt =  (ao +  a\r t)dt -f- borl/ 2dWt, (2.1)

satisfies the regularity conditions for both a strong solution (pathwise convergent) 

and a weak solution (convergent in probability) (Karatzas and Shreve 1997). Ob­

viously a strong solution implies a weak one, but not vice versa. If (1) ao >  0, (2) 

bo >  0, (3) ai <  0 and (4) <  2a0, then the square-iool model has a unique funda­

m ental solution (Feller 1951). The marginal density is a Gamma  distribution, and the 

transitional density is a  type I Bessel function distribution or a noncentral chi-square 

distribution with a fractional order (Cox et al. 1985a). Intuitively condition (3) gives 

mean reversion, and condition (4) ensures the stationarity.

S
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The marginal Gamma distribution is

f( ro  M  =  (“*“ )

where u  =  —2gei/6q, u =  2ao/6g, and T(-) is the Gamma  function. The unconditional 

mean and variance are

E( r„) =  ^  =  5 ,  (2.3)

V'(ro) =  §  =  (2,4)

Notice tha t the first two moments merely identify the marginal distribution. Higher 

order moments are simply nonlinear functions of the first two moments. The marginal 

density alone can not identify all three param eters in the diffusion process. Any GMM 

type estim ator must add at least one lagged instrum ental variable (Gibbons and

Ramaswamy 1993). A rejection of the marginal distribution can reject the square-

root model; however, a non-rejection does not provide enough information forjudging 

a particular param eter setting (Ai't-Sahalia 1996b). Transitional information must 

be exploited to fully identify the dynamic structure.

The conditional density is

/ ( r i |r0: oq, ai,bo) =  ce~u~v(- )%I ,(2(uu)*), (2.5)
u

<7 =  T T - 1 ’ (2-6)%

where c =  — 2a1/(6g(l — e“1)), u = cr0eai. and v =  c tv  /,(•) is a modified Bessel

function of the first kind with a  fractional order q (Oliver 1972). The conditional

m ean and variance are

£ ( r i M  =  r0eQl -  — (1 -  eai), (2.7)
a 1
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V'(r.lro) =  r „ ( - S ) e * ' ( l - e “') +  f ^ ( l - e “ )2. (2.S)
a\ la \

By the stationary property, the lim it of the transitional density as the  tim e interval 

goes to zero, is exactly the marginal density. Therefore any estimation strategy or 

specification test exploiting the transitional density will naturally nest those relying 

on marginal density.

It is a common practice in the literature to call this distribution a “noncentral chi- 

square distribution” . However, the “integer order noncentral chi-square distribution” 

does not naturally extend to the “fractional order noncentral chi-square distribution” . 

The la tte r arises commonly from the solution to a diffusion process (Feller 1971), while

the former arises from the sample standard deviation of independent, nonidentical,

noncentered, normal random variables (Johnson and Kotz 1970).

2.2.2 Maximum Likelihood Estim ations

In industry and academics alike, one popular m ethod in estimating the square-root 

model for interest rates is the Discretized M aximum Likelihood Estimation (DMLE), 

i.e., a misspecified QMLE based on the tim e discretization of the conditional mean 

and variance

£ (r i |r 0) ~  a0 +  (1 +  ai)r0, (2.9)

V'(ri|r0) as 6jjr„. (2.10)

As pointed out by Lo (19SS), DMLE is generally not consistent. The param eter 

estim ates are asymptotically biased, since both  moments are misspecified.

The exact expressions for the conditional mean and variance (equations 2.7 and 

2.S) suggest a quasi-maximum likelihood estim ator for the square-root model. QMLE 

is shown to be root-n consistent (Bollerslev and Wooldridge 1992), although its ef­

ficiency is certainly less than th a t of MLE. The com putational efficiency of QMLE

10
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could be very attractive, because the analytical gradients are available in many cases. 

Monte Carlo evidence on the relative efficiency of QMLE would be very useful in sit­

uations when EMM (asymptotically efficient) and QMLE (com putationally efficient) 

are available but MLE is not. An empirical exam ple is the multifactor affine model for 

term  structure, which has tractable forms of conditional mean and variance (Fisher 

and Gilles 1996) but usually is estim ated by EMM (Dai and Singleton 2000). When 

sample size is large, EMM will certainly outperform  QMLE due to the asymptotic 

efficiency argument, because the endogenous score generator will naturally pick more 

moment conditions and more of the lags entering these moments. However, in small 

econometric samples, QMLE as a special case of conventional method of moments 

could outperform EMM, since no theoretical efficiency argument is universally true 

(Gallant and Tauchen 199Sa). A com putationally efficient approach for estimating 

affine term  structure is very useful in asset pricing practice.

W hen implementing MLE for the square-root model, the Bessel function rep­

resentation of the likelihood function is not a t all a convenient form (Pearson and 

Sun 1994, Duffie and Singleton 1997). An alternative Poisson-rmx'mg-Garnma charac­

terization can be inferred from the simulation strategy suggested by Devroye (19S6). 

W ithin the admissible param eter region, one can substitute the Bessel function with 

an infinite series expansion (Oliver 1972). W ith appropriate transformations (y =  v , 

A =  q +  1, and (3 = \ /2u),  the alternative mixing formula falls out nicely,

~  :+x-ie-y ( f V 'e - T
f ( y )  =  Y ~ --------------------------  (2 .1 1 )
ny) h  r( i + A)

co 02
= ^ 2  G am m a(y|j +  A, 1) • Poisson(j|— ). 

j=o

One needs to be cautious tha t the Poisson weights are not constant, but conditioning 

on the previous realization r 0. This formula corresponds to the “Poisson driven

11
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Gamma  process1’ in Feller (1971). The only difference is tha t A =  q +  1 remains 

a fractional num ber, not an integer. The evaluation of the log-likelihood function 

in MLE is greatly simplified, when using the Poisson-mixmg-Gamma  formula. It is 

fairly easy to achieve the single precision 10-8 by truncating the Poisson distribution 

around 100. One can also avoid any complication of complex value or non-convergence 

in evaluating the Bessel function.

2.2.3 Simulation and Inferences

The above characterization also defines a  composite simulation method for the square- 

root process (Devroye 1986). First, one draws a random number j  from the distri­

bution Poisson(j\P2/2).  Then, one draws another random number y  from the dis­

tribution Gamma(y\j  +  A ,l). Finally, one calculates the desired state  variable rq 

by rq =  yjc.  Notice the realized ri is the conditioning value r0 in the next draw. 

The initial value r0, when starting a simulation run, can be set to the theoretical 

unconditional mean. To pass on the transient effect, the first 1000 realizations can 

be discarded.

Since we know the true param eter value, the likelihood ratio tests can determine 

how often the confidence region centered a t the estim ated param eter value contains 

the tru th . The same principle may be extended to QMLE if the expected quasi­

likelihood function is uniquely maximized at the tru th  (identification requirement). 

In addition to  the correct specification of the mean and variance, the remaining 

innovation error m ust be centered a t zero or have a sym m etric distribution (Newey 

and Steigerwald 1997). QMLE for the square-root model meets these conditions.

12
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2.3 Efficient M ethod of M oments Estim ation

This section describes the EMM estim ator and emphasizes its asymptotic efficiency. 

For formal discussions see Gallant and Tauchen (1996b), Tauchen (1996), and Gallant 

and Long (1997).

2.3.1 Approximating True D ensity w ith Auxiliary M odel

Denote the invariant probability measure implied by the underlying data generating 

process as the p-model. It is assumed tha t the direct maximum likelihood estima­

tion of the p-model is not available. However, any smooth density function can be 

approximated arbitrarily close by a Herm ite polynomial expansion.

Consider a scalar case. Let y  be the random variable, x  be the lagged y, and 6 be 

the param eter. The auxiliary /-m odel has a density function defined by a modified 

Hermite polynomial,

f ( y \x ,  0 ) = C {['P {z , x)]2<p{y\yx , cr*)}, (2.12)

where V  is a polynomial with degree K~ in z and the square of V  makes the density 

positive. The argument of the polynomial is z, which is the transformation z =  

(y — fix)/crx. The coefficient of the polynomial is another polynomial of degree I\x in 

x. The constant in the polynomial is set to 1 for identification. C is a normalizing 

factor to make the density proper. <£(•) is a normal density of y with conditional 

mean /jr  and conditional variance cr£. The length of the auxiliary model parameter 

is determined by the lag in mean Ly,  lag in variance Lr , lag in polynomial coefficient 

Lp. polynomial degree K : . and polynomial degree K x. Let {j/t}"=1 be the observed 

data  and i (_ L be the lagged observations. The sample mean log-likelihood function 

is defined by

•Q 0 ,e< K U i) =  - f > g [ / ( S , | x , - I . W  (2-13)
n t=1
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A quasi-maximum-likelihood estim ator is obtained by

6 =  a rg m a x £ n(0,{th}"=1). (2.14)

The dimension of the auxiliary /-m odel, the length of 0, is selected by Schwarz’s 

Bayesian Information Criterion (BIC). There are different choices of the information 

criteria for optim al model selection. For a finite dimensional stationary process, BIC 

with a bigger penalty for model complexity proves to be consistent, while the Akaike’s 

Information Criterion (AIC) will overfit the model. On the other hand, if the true 

dimension is infinity or increases to  infinity with the sample size, AIC with a smaller 

penalty for model complexity is optimal (Zheng and Loh 1995). The dimensions of 

the /-model needs to be as large as the p-model to meet the identification condition.

2.3.2 M atching Auxiliary Scores w ith Minimum Chi-Square

From the first-stage seminonparametric estim ates, one obtains the fitted scores as 

the moment conditions,

m»(0) =  1°S f ( y t \ x t- i ,9 ) .  (2.15)

In the second stage, a SMM-type estim ator is implemented in the following way. 

Although the direct MLE for p-model is assumed impossible, the simulation from 

the structural model (e.g., stochastic differential equation) is readily available. Let 

{y*}£Li be a long simulation from a candidate value of p. the param eter of the main­

tained structural model. The auxiliary score functions can be reevaluated at the 

simulated data,

m N( p J )  =  ^ £ ^ l o g / ( t / , | x f_ t ,0), (2.16)

and the minimum chi-square estim ator is simply,

p =  arg nun{miv(/9,0)'j -1mjv(/>, 6)}. (2.17)
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where the  weighting m atrix X  1 is estim ated by the mean-outer-product of scores 

from the auxiliary model

^ los f(yt\Zt-i, loe f(yt 0)]'. (2.1s)

Remember that the efficiency loss of the GMM-type estimators is largely a t­

tributed to the high cost and low accuracy in estim ating the serially correlated weight­

ing m atrix. In EMM the moment conditions are chosen orthogonally by the Hermite 

polynomial expansion; hence the information m atrix is diagonal or nearly diagonal 

(i.e., serially uncorrelated). The efficiency argum ent of EMM relies on three condi­

tions: the  dimension of the auxiliary model is sufficiently large (K  oo), the lag in 

the the auxiliary model is sufficiently long (L  —> oo), and the simulation from the 

m aintained structural model is sufficiently long (N  oc). This encompasses both 

Markovian and non-Markovian cases (G allant and Long 1997).

2.3.3 Overrejection and M isspecification

The normalized criterion function value in the EMM estimation

c2 =  n m N(p, 0)'X~lm N{p, 9) (2.19)

forms a specification test for the overidentifying restrictions. Under the correct spec- 

ification of the maintained model (Tauchen 1996), we have — > X 2(lg — /p), where 

the degree of freedom equals the param eter length of the auxiliary model minus 

tha t of the structural model. However, if the m aintained model is misspecified 

(Tauchen 1996), we have

— c2 =  m N (p ,9yX ~ lmw(p.9) > 0. 
n

where 6. p, and X  are the asymptotic pseudo-true values under the m aintained mis­

specification. As long as the sample size n is large enough, the SNP score generator
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will be rich enough such th a t the false passage c2 =  0 will not occur under misspeci- 

fication.

Considering the fact tha t the EMM estim ation has overrejection bias converging 

to zero as the sample size increases (Andersen et al. 1999c, Chumacero 1997), it might 

be convenient to synthesize the above two situations in the following manner:

cl A  X 2(l, -  l„) + mg,

where d2 is either the overrejection bias or the noncentrality param eter. When the 

model is correctly specified, dn =  o ( l / n 1/,2+c), i.e., the normalized bias nci^ is dissi­

pating. For the misspecified model, dn =  o (l) , i.e., the normalized noncentrality nd% 

is exploding.

2.4 M onte Carlo D esign and Benchmark Choice

2.4.1 Experimental Design

All com putations are performed on one SunOS5.5 Solaris/Sparc and two SunOS 5.6 

Solaris/XS6 servers. Programs for generating random samples, QMLE, and MLE 

of the CIR model are w ritten in FORTRAN language. The FORTAN codes for 

SNP and EMM are modified from SNP Version S.5 (Gallant and Tauchen 1997) 

and EMM Version 1.3 (Gallant and Tauchen 1996a), incorporating automatic SNP 

search by BIC in half of the EMM sim ulation runs. NPSOL (Gill, Murray, Saunders, 

and Wright 1991) is the optim ization routine used for all of the programs. The 

contrasting sample sizes are chosen to be 500 and 1500. The pseudo-random sample 

of the CIR model is simulated from the exact distribution function, i.e., the mixing 

formula in Section 2.2. The EMM estim ator uses a discretized weak-order 2 scheme 

to approxim ate the ergodic stochastic systems. W hen generating the pseudo-random 

samples, 1000 initial stretch is discarded to pass on the transient effect. A total
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of 1000 Monte Carlo replications are generated. Each QMLE run take about 5-10 

seconds; each MLE run takes about 3-20 minutes; and each EMM run takes about 2-6 

hours. The total computational tim e for the current version is nearly 12 months. The 

second stage of EMM estim ation is similar to  SMM. The simulation size should be at 

least 30,000. It does stabilize from 50,000 to 75,000, and could have more Monte Carlo 

errors a t 100,000. Thus 50,000 turns out to be a conservative but economical choice 

(Gallant and Tauchen 1998b). For the EMM stage, I first conducted 1000 simulations 

using an autom atic score generator. Since BIC is suspected to be conservative, the 

autom atic SNP search may pick too few moments, affecting the estim ation efficiency 

and specification test (fully discussed in Section 5.6). Based on the 1000 automatic 

EMM simulation, I adopted one particular score for the 500 sample size and another 

for the 1500 sample size. These specifications are at relatively higher dimensions, 

with abundant occurrence but without severely rejections. Then I performed an 

additional 1000 simulations for EMM, using these “posterior” fixed score generators. 

This procedure mimics the realistic situation, when an empirical researcher not only 

uses BIC as an objective criterion in model selection but also incorporates prior 

information to set some thresholds levels (Andersen et al. 1999c, Gallant and Tauchen 

1998b).

2.4.2 Benchmark M odel

To select a suitable param eter setting, we start with the empirical result from Gallant 

and Tauchen (1998b), drt =  (0.02491—0.002S5rt )</t+0.0275ry2d iy t. Using equations 

2.3, 2.5, and 2.6-2.8, one can calculate the unconditional mean and variance, the 

Bessel function order, and the conditional m ean and variance. It is not difficult to see 

tha t this original specification, Scenario 2.1 in Table 2.1, features low mean-reversion 

(E (r t+i\r t) is nearly unit-root) and low conditional volatility (K (rf+i | r t) is close zero).
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Also the unconditional variance is unusually small, representing an abnormally quiet 

process. The order of the Bessel function, twice of which corresponds to the degree 

of freedom for an integer order noncentral chi-square distribution, is so large that 

the conditional density looks almost Gaussian. This benchmark model is not a  good 

setting for the purpose of Monte Carlo study, because the distribution is not rich 

enough to generate overidentified moment conditions; hence the overrejection problem 

can not be investigated in a realistic setting.

If one increases only the variance param eter bo from Scenario 1 to 2-4 in Table 2.1, 

the Bessel function order q decreases gradually from the Gaussian-like specification, 

but the conditional volatility is still negligible. Alternatively, one can increase both 

the mean parameters ao and ai by a factor of 100 and the variance parameter bo 

by a factor of 10 from Scenario 1 to 5 in Table 1.1, while holding the unconditional 

mean and variance constant. This change will increase the conditional volatility 

slightly, but the Bessel function order q is still quite large (resembling a Gaussian- 

like distribution). If one increases the variance param eter 60 from Scenario 5 to 6-8 

in Table 2.1, both high conditional volatility and small Bessel function order are 

achieved. Scenario 8 is rich enough for the Monte Carlo study, particularly for the 

purpose of overrejection test. However, the high persistence in mean is sacrificed 

somewhat. Therefore one should not arbitrarily relate this setting to the real interest 

rate, which requires more flexible modeling.

The desired Scenario 8 in Table 2.1, drt =  (2.491 — 0.2S5r*)d£ +  1.1 r lJ 2d\Vt, 

is termed an H M R -H C V  specification (high-mean-reversion and high-conditional- 

volatility), and the original Scenario 1 is term ed as L M R -L C V  specification (low 

mean reversion and low conditional volatility). By choosing H M R -H C V  instead of 

L M R -L C V  as the benchmark model, EMM is put in a least favorable position for 

studying the asym ptotic efficiency and overrejection test, when conventional method
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of moments could easily outperform EMM (Gallant and Tauchen 1998a). In Scenario 

1 the Gaussian-like distribution can be virtually nested by a richer SNP auxiliary 

model, but in Scenario 8 the genuine type I Bessel function distribution can only be 

approximated by a suitable score generator.

There is a  fundamental concern on how flexible the square-root model can be. In 

order to do interesting comparative studies, one would like to hold the unconditional 

mean (—a0/a i )  constant without explosion (60 <  4 < Z q ) ,  resembling a stationary inter­

est rate process. To achieve high persistence in both conditional mean and variance, 

one has only three parameters to manipulate. It seems impossible because one has 

to satisfy four constraints simultaneously. This indicates tha t the square-root model 

may not be flexible enough to model the interest rate dynamics. To find a more suit­

able model requires a fourth degree of freedom, for example, a stochastic volatility 

component (Gallant and Tauchen 1998b).

2.4.3 Testing M isspecification

The goal is to find a true data  generating process, of which an adequate auxiliary score 

will not accommodate a misspecified model. As discussed in Section 2.1, the square- 

root model is widely used in fitting the short rate process, but most serious studies 

have rejected this specification. So it is natural to adopt the square-root process as 

a misspecified model to and use a non-rejected model as the true data generating 

process (for the short interest rate). A recent study by Gallant and Tauchen (1998b) 

gave the most favorable evidence for the “CKLSO-SV-FB” model,

drt =  (0.014 -  0.002rt )<ft +  (0.043 -  0 M S r t )eUtdW u (2.20)

dut = (—0.006r£ — 0.157ut )dt +  (0.593 — 0.052ui)dlP’2£- (2.21)

The short rate  process r t has a linear drift and a linear diffusion, with the diffusion 

multiplied by an unobserved (exponential) stochastic volatility term  eu‘. The short
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rate rt is only partially observable in discrete time. The latent stochastic volatility 

process u t also has a linear drift and a linear diffusion, with the drift added by a 

short rate level feedback. This model adequately passed the specification test for 

various simulation sizes and greatly outperformed the competing models in terms of 

reprojecting the conditional density and the conditional volatility. It would be our 

ideal choice of a  true data  generating process.

When we fit a  misspecified square-root model to simulated interest rate data  from 

this CKLSO-SV-FB model,

1 /2  fdrt =  (a0 +  (i\rt )dt +  bQrt ' dW t,

the drift is correctly specified as a  linear function, and the misspecification comes into 

the diffusion. From Ito’s formula we know that the conditional mean is also correctly 

specified as linear; therefore the  drift param eters are consistent estimates (Ait-Sahalia 

1996a). It is equivalent to the case where Ordinary Least Square is consistent, but 

unaccounted heteroskedastic an d /o r correlated error structure may cause very noisy 

and inefficient estimates. The misspecified diffusion generates inconsistent estimates 

of the conditional variance, which may seriously distort the pricing of interest rate 

sensitive derivatives. Therefore the detection of diffusion misspecification is a critical 

challenge to financial econometricians.

2.5 M onte Carlo Results

Tables 2.2 to 2.10 and Figures 2.1 to 2.6 summarize the m ajor findings of this pa­

per. The discussions are organized along topics, and extensive comparisons are made 

across QMLE, EMM, and MLE. The main focuses are finite sample efficiency, over­

rejection bias under the null, and detecting m aintained misspecification. Both the 

autom atic score generator and the fixed score generator are used in EMM. The like­

lihood ratio tests in MLE and QMLE provide joint inferences.
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2.5.1 Simulation Schemes

The Poisson-m\x\ng-Gamma formula is a useful characterization for the square-root 

model. The simulation accuracy based on the distribution function can provide an 

independent check for the derivations in Section 2.2. It is not only the Monte Carlo 

study needs a solid basis; further applications of MLE with this formula also require 

some justification. The discretized approximation to stochastic differential equations 

is a cornerstone of the EMM estim ator, as a simulation-based estim ator. EMM 

uses a weak-order 2 scheme (Kloeden and Platen 1992). To assess these simulation 

approaches, some empirical statistics from long realizations ( 100,000) are compared 

to their theoretical counterparts.

Table 2.2 lists the calculation of two moments and three quantiles. Clearly both 

schemes work reasonably well, with the relative error ranging from 0.12% to 1.8%. 

Since our benchmark model features strong mean reversion and is far away from unit 

root (£ l( r t+ l|r () =  0.75rt) and is hence stationary, the estim ate of the unconditional 

mean is very precise. It is not surprising tha t the probabilistic method is superior to 

the discretized method, although the difference is negligible.

2.5.2 Score Generator

An im portant feature of EMM is the endogenous moment selection by a seminon- 

param etric score generator (SNP), which contrasts w ith the ad hoc choice of moment 

conditions in GMM or SMM. The optim al SNP search and the inexpensive weight­

ing m atrix  estim ate are key to the efficiency argum ent and hopefully also improve 

the overrejection test. It is worthwhile to check whether the SNP score captures 

the distribution features of different dependent structures before launching the full- 

scale Monte Carlo experiment. Tables 2.3 (500 sample size) and 2.4 (1500 sample 

size) report the SNP searches for the S scenarios in Table 2.1. For each setting, the
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frequencies of all kinds of model choices among 100 replications are listed. Model 

dimension is represented by a five-digit number, which stands for, consecutively, lag 

in mean, lag in variance, lag in polynomial, degree of Hermite polynomial, and degree 

of Hermite coefficient polynomial.

Scenario 1 in Tables 2.3 and 2.4 is the L M R -L C V  case (low-mean-reversion, low- 

conditional-volatility). Not surprisingly the Gaussian auto-regression specification 

10100 dominates other choices. It is consistent with the fact that the true density is 

close to Gaussian under this param eter setting (see Table 2.1). Moving from Scenario 

1 to 2, 3, and 4, the conditional volatility increases gradually, since the variance 

param eter 60 is altered (see Table 2.1). The m ajority choice is still Gaussian, and 

the chances of ARCH and/or non-Gaussian specifications increase slightly. Moving 

toward Scenarios 5-8, both mean param eters ao, a i, and variance param eter 6o are 

altered (see Table 2.1), and ultim ately one reaches the H M R -H C V  case (high- 

mean-reversion, high-conditional-volatility). It is clear that the SNP search favors 

the nonlinear, nonparam etric AR-ARCH specification. This is consistent with the low 

Bessel function order and high conditional variance (Table 2.1). Largely due to this 

"distribution-dependent” or “data-dependent” score generator, the EMM estim ator is 

claimed to be asymptotically efficient and hopefully more reliable in the specification 

test.

Also evident from Tables 2.3 and 2.4 is th a t larger sample sizes enable the SNP 

to pick up higher model dimensions. In fact, the asymptotic efficiency argument 

requires that the number of moment conditions and the lags entering each moment 

increase with the sample size (Gallant and Long 1997). Table 2.5 verifies that this 

requirement is satisfied; i.e., the auxiliary model is getting richer as the sample size 

increases.

A salient question is whether the structural model can be identified when the SNP
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search does pick the Gaussian-AR(l) score. This corresponds to a quasi-maximum 

likelihood estim ator based on

zt =  (r, -  o0 -  O irt_ i ) /o 2 ~  N { 0 ,1). (2.22)

Since the conditional mean is correctly specified, the QMLE of o 0 and 0 [ is a con­

sistent estim ators of e“* and — a0/czi(l — ea‘). It is ju st an Ordinary Least Square 

with a heteroskedastic and serially correlated error term  (Ai’t-Sahalia 1996a). The 

conditional variance is misspecified as the constant a 2. However, according to the 

theory of misspecified maximum likelihood estim ation (W hite 1994), the  estim ator 

o 2 converges to the pseudo-true value q 2. The key argument is that the misspecified 

asym ptotic variance q 2 must be a function of the true variance parameter 6o, since 

both conditional variance and unconditional variance are determined by 60. These 

asymptotic relations, two explicit and one implicit, are indeed the binding functions 

in the language of Indirect Inference (Gourieroux, Monfort, and Renault 1993). Ob­

viously the structural parameters ao, a i, and bo are exactly identified by the auxiliary 

param eters ao, a i ,  and a 2. EMM is a feasible first-order approximation to the Indi­

rect Inference (Gallant and Long 1997).

2.5.3 Dispersion and A sym m etry

The asym ptotic theory suggests tha t the sampling distribution of parameter estimates 

should be approximately normal and become more concentrated as the sample size 

increases. Table 2.6 summarizes the relevant quantiles and mean statistics, across 

three param eters, between 500 and 1500 sample sizes and among different estimators.

The variance param eter b0 is almost symmetric (Mean ~  Median) and is very 

concentrated about the median. The drift param eters a0 and ai are less symmetric 

and less concentrated. This result coincides with a well-documented fact tha t the

23

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

volatility can be precisely estim ated, even if the drift estim ate is inaccurate (Ai’t- 

Sahalia 1996a). All estim ators seem to be internally consistent since both asymm etry 

(difference between Mean and Median) and dispersion (distance between Median 

and other Quantiles) across three param eters uniformly reduce as the sample size 

increases. Apparently MLE is the least dispersed and the most symmetric for all 

three param eters at all sample sizes. QMLE is better than the autom atic score 

EMM but worse than the fixed score EMM. It is worth noting that the improvement 

of EMM over different sample sizes is larger than that of QMLE or MLE. A possible 

explanation may be th a t the SNP search is able to capture more distribution features 

with larger sample sizes by choosing a richer score.

2.5.4 B ias, RM SE, and Relative Efficiency

Theoretically the information m atrix of MLE reaches the Cramer-Rao lower bound 

and hence is fully efficient. The efficiency of EMM approaches tha t of MLE, as the 

root-mean-squared-error (RMSE) reduces faster than \Jn in finite samples. QMLE 

is superior to the autom atic score EMM but inferior to the fixed score EMM.

In all cases, the param eter estim ates are NOT significantly biased (Table 2.7). 

Also the biases decrease as sample size increases. The signs of biases for EMM are 

persistent, w ith upward bias for a0 and downward bias for a\, and 60. One possible 

cause may be the asymm etry of the EMM objective function. The signs of biases for 

QMLE and MLE are not persistent. Overall the magnitudes of biases are negligible. 

Theoretically, all these estim ators are consistent with zero asymptotic bias.

It is clear from Table 2.7 tha t the RMSEs of QMLE and MLE are shrinking 

almost exactly at the rate -y/3, as the sample size increase from 500 to 1500. For 

EMM, the convergence rates are greater than >/3- The drift param eter estimates are 

less efficient, w ith the RMSEs ranging from 5% to 30% of the param eter value. The
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variance param eter estimates are very efficient, with the same ratios ranging from 

3% to 6%. Such a disparity between the drift and volatility estimates is large for 

autom atic score EMM and is very small for MLE. The RMSEs of QMLE and fixed 

score EMM are in between. Overall, these estimators seem quite efficient.

The relative efficiency of EMM is rising significantly from 500 sample to 1500 

sample (Table 2.S). This finding m ust be correct since EMM is proven to be asymp­

totically as efficient as MLE. QMLE has a computational advantage with the analyt­

ical gradients, which is not available in EMM or MLE. The advantage explains why 

QMLE is more efficient than autom atic score EMM and why the QMLE of variance 

param eter estim ate can be more efficient than MLE. Taking this fact into account, 

the fixed score EMM apparently matches or surpassed QMLE when sample size in­

creases to 1500. The main reason for the increasing relative efficiency of EMM is that 

the SNP score generator is able to approximate the underlying distribution arbitrar­

ily close, with more moments and lags in larger samples. The Monte Carlo result 

shows th a t for autom atic score EMM, the average number of overidentified moment 

conditions is 3 for N  =  500 and 5 for N  =  1500. The educated choice of fixed score 

EMM set the number of overidentified moment conditions at 5 for N  =  500 and 7 for 

A* =  1500. Whenever MLE is unavailable, EMM will be favored by longer data series. 

However in small econometric samples, the com putational efficiency of QMLE may 

outweigh the asymptotic efficiency of EMM. The choice must be made case-by-case 

(Dai and Singleton 2000).

2.5.5 Statistical Inferences

W ith a knowledge of the true specification, one can perform a likelihood ratio test 

to see whether the confidence ball centered at the estim ated value contains the true 

param eter value. According to the null hypothesis, ideally the test should contain the
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true model at 100%. The bottom  line must be tha t the rejection rate does not exceed 

the asymptotic size. Table 2.9 shows tha t the MLE approach defined by the m ixture 

formula in Section 2 is fully reliable. The inference based on the likelihood ratio test 

is above the significance level and close to full containment. The improvement from 

T  =  500 to T  = 1500 is consistent with the asym ptotic argument that as n —» oo. 

the confidence ball should concentrate to a single point of tru th . Not surprisingly the 

likelihood inferences for QMLE fall short of the asym ptotic level and do not improve 

as the sample size increases. As a misspecified MLE, the likelihood ratio for QMLE 

is only valid in an asym ptotic sense.

2.5.6 Overrejection Bias

Even with the improved estim ates of weighting m atrix, the small-sample chi-square 

test in EMM still exceeds its asym ptotic size. The simulation results on autom atic 

score EMM can reveal some connections between the number of overidentifying mo­

ments and the overrejection rate. There is a significant improvement for the fixed 

score EMM. The remaining small sample bias can be corrected by the sampling dis­

tribution of the test statistics.

The 5% gross overrejection rate in autom atic score EMM is about 20% for T  =  500 

and about 25% for T  =  1500. As pointed out in Section 3, BIC tends to underfit if 

the true model dimension is increasing with sample size. By choosing Scenario S in 

Table 2.1, the EMM estim ator is in a least favorable position for the overrejection 

test, since the true model has a high conditional volatility and is a non-Gaussian 

innovation. Figures 2.1 and 2 .2 ‘plot the rejection rates with the number of overi­

dentified moment conditions, which is autom atically chosen by BIC. The asym ptotic 

size of the specification test is fixed at 5%. The occurrence rates show the frequen­

cies of different numbers of moment conditions in 1000 replications. Some im portant
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features need to be mentioned. First, the rejection curve does not uniformly shoot 

up when more moment conditions are included, since these moments are optim ally 

selected by the SNP score generator. Second, the rejection rates are more stable at 

T  =  1500 than T  =  500, as more moments and lags are included. Third, the rejection 

rate could be remarkably small for certain low dimensions as well as for some high 

dimensions. Since BIC tends to underfit the auxiliary model in small samples, the 

higher level unrejected score is more likely capturing the true distribution. If the 

lower level unrejected score did pick the true specification, the rejection rate should 

uniformly shoot up beyond tha t level. The implication for empirical work is tha t an 

SNP search should go beyond the first optimal choice by BIC.

The educated choices of model dimensions in fixed-score EMM are 10111 with 

5 overidentified moments at T  = 500 and 10121 with 7 overidentified moments at 

T  =  1500. At these two scores (Figures 2.1 and 2.2), not only the rejection rate 

should be small (<  20%), but also the overall occurrence of that choice of tha t model 

dimension should be high (>  10%). The simulation results for fixedOscore EMM are 

more encouraging, some of which are discussed in previous subsections. As for the 

rejection rates, the 1%, 5%, and 10% size levels are respectively S.7%, 17.4%, and 

23.5% for T  =  500, and 5.0%, 10.3%, and 16.3% for T  =  1500 (see Figure 2.3). The 

improvement over the autom atic score EMM is remarkable, and the improvement 

from T  — 500 to T  =  1500 is more than 50%.

There are at least four sources of overrejection bias in GMM-type estim ators: inac­

curate and costly estim ates of the weighting m atrix, ad hoc selection of the moment 

conditions, an inadequate num ber of moments to capture the distribution feature, 

and simply a  small sample bias. A generic EMM approach overcomes the first two 

problems by adopting a serially uncorrelated information matrix and an optim al SNP 

score generator. The conservative BIC in EMM may choose too few moments, but
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one can rectify this by using additional information and extending the SNP search 

beyond the BIC choice. The remaining small sample bias can be remedied by enlarg­

ing the sample size or by adopting a  model-dependent optimal information criterion. 

If sample size is fixed and no better information criterion is available, an ex post 

correction of the test statistics may be applicable (Conley, Hansen, and Liu 1997b).

Table 2.10 gives the original and adjusted p-values for this particular square-root 

model. As expected, the correction is large for T  =  500 and small for T  =  1500. To 

calculate the adjustm ent, one first finds the critical value of a g’th quantile from the 

exact distribution of test statistics, then finds the p’th percentile corresponding to 

this critical value from the sampling distribution of the test statistics. In last row in 

Table 2.10, if the theoretical p-value is 10-6 , the adjusted p-value is 0.01 for T  =  500 

and 0.003 for T  = 1500. If the corrected p-value is less than 0.01, then the rejection 

is likely to be final.

2.5.7 D etecting M isspecification

In the first stage, we use the benchmark stochastic volatility model (Section 4.3) 

to simulate twice 1000 replications of both 500 and 1500 sample sizes, and we fit a 

square-root diffusion process to the data. This time we let BIC autom atically choose 

the best SNP score generator. Since the drift is linear, the conditional mean with lag 

one is correctly specified. For the 500 sample size, 91% trials select lag 1; and for the 

1500 sample size, 93% select lag 1. The choice of conditional standard deviation is 

all over the place, due the nature of nonlinear stochastic volatility. For T  =  500, the 

selection is scattered mainly from lag 1 to lag 4, and for T  =  1500, it is mainly from 

lag 3 to lag 6. The choices of K~ and K x are predominantly zero. Figure 2.4 and 2.5 

plot the 5% rejection rates against the number of overidentified moments along with 

the occurrence ratio of these moment choices. The highlight is th a t the probability of
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rejecting a misspecified model does converge to one very quickly. At T  = 500, the 5% 

level rejection rate is around 80-90% for a  range of overidentified moments between 

1 to 6, and rejection rate almost 100% beyond th a t (Figure 2.4). At T  = 1500, the 

rejection rate is always close to 100%, except in an exactly identified case (Figure 

2.5).

In the second stage, similar to  the studying of overrejection issue, we fix the SNP 

score generator and look at the rejection rate uniformly along the 1%-100% test level. 

The fix score generator for the 500 sample size is sl310000, which has 6 parameters. 

Since the misspecified square-root model has 3 parameters, the chi-square test is of 

degree 3. When T  =  1500, the score is fixed a t sl510000, with 8 — 3 =  5 degree 

of freedom. Figure 2.6 gives the q-q plot from the sampling distribution of the test 

statistics. For the 500 sample size, the smallest rejection rate is 50% when the test 

level is 1%, and the rejection rate quickly reaches 90% at the 15% level. The rejection 

curve of T  =  1500 starts out at 9S% and quickly converges to 100%. The convergence 

of the rejection probabilities towards 100% is extremely fast from T  =  500 to T  =  

1500. Since the misspecification rejection curves in Figure 6 are way above the 

overrejection curves in Figure 3, no ad hoc adjustm ent of p-value (such as those in 

previous subsection) can m istaken the intrinsic misspecification as an overrejection 

bias.

2.6 Conclusions

This paper investigates the finite sample properties of Efficient Method of Moments 

in conjunction with Maximum Likelihood Estimations for a square-root diffusion 

process. M ajor findings are:

By optimally choosing the moment conditions, the EMM estim ator tends to be 

asym ptotically as efficient as MLE. The overrejection bias of EMM converges to zero
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when the sample size increases, and the rejection rate  of misspecification is quickly 

converging to one with the sample size.

MLE for the square-root model is well defined by factorizing the transitional den­

sity into a Po/sson-m ixing-Gam m adistribution. QMLE has attractive computational 

efficiency in small samples. The likelihood-ratio inference suggests that MLE is more 

reliable than QMLE.

2.7 Tables and Figures
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Table 2.1: Benchmark Model Choice
1 /  2The square-root model is drt =  (ao +  a ir t)dt +  bort dWt. Scenario 1 is taken down 

from Gallant and Tauchen (1998b). In Scenarios 2-4, the variance param eter b0 is 
increased by a factor of 2, 3, and 4 respectively. From Scenario 1 to Scenario 5, 
the mean parameters a0 and ax are multiplied by 100 and the variance param eter 
60 is multiplied by 10. From Scenario 5 to Scenarios 6-8, the variance param eter wo 
is increased by a factor of 2, 3, and 4 respectively. E(rt). V( r t ), q, E (rt+i\rt), and 
l / ( r £+1|r £) are calculated using equations 2.3, 2.4, and 2.6-2.8.

a0 =  0.02491 Scenario 1 Scenario 2 Scenario 3 Scenario 4
ai = -0.00285 b0 =0.0275 b0 =0.055 b0 =0.0825 <r ii o

E( r t) 8.74 8.74 8.74 S.74
V( r t) 1.16 4.64 10.44 18.55

Bessel q 64.88 15.47 6.32 3.12
E{rt+i\rt) 0.997r£+0.025 0.997rt+0.025 0.997r*+0.025 0.997r(+0.025

lr t) 0.001^ + 0.000 0.003^+0.000 0.007r*+0.000 0.012r £ + 0.000
a0 =  2.491 Scenario 5 Scenario 6 Scenario 7 Scenario 8

Ql =  —0.2S5 b0 =0.275 b0 =0.55 b0 =0.825 b0 = 1.1
E( r t) 8.74 8.74 S.74 8.74
V( r t) 1.16 4,64 10.44 18.55

Bessel q 64.88 15.47 6.32 3.12
E {rt+i\rt) 0.75^+2.17 0.75t-(+2.17 0.75r£+2.17 0.75r£+2.17
V (r t+i\rt) 0.05r(+ 0 .07 0.20r<+0.29 0.45rf+0.64 0.79r£ +  1.14

Table 2.2: Sim ulation Schemes (100,000 Length)
For the square-root model drt =  (a0 +  a^r^d t  +  bQr lJ 2dW t, the marginal distribution 
is a Gamma (equation 2.2), and the  theoretical values are calculated accordingly. 
Simulation by distribution is based on the Poisson-mixmg-Gamma formula (equation 
2.11). Simulation by discretization is based on the weak-order 2 scheme (Gallant and 
Long 1997).

Sim ulated by 
D istribution

Simulated by 
Discretization

Theoretical
Value

Mean 8.75 8.70 8.74
Variance 18.34 18.22 18.55
5% Quantile 3.04 3.03 3.05
Median 8.08 S.02 S.05
95% Quantile 16.70 16.67 16.81
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Table 2.3: SNP Search for 500 Sample Size 
These results are from 100 replications of each scenario with 500 and 1500 sample 
sizes. The information criterion used in moment selection is Schwartz’s BIC. Scenarios 
1-8 are the same as those in Table 2.1. Each model specification is characterized by 
a 5-digit number. Consecutively each digit stands for lag in mean, lag in variance, 
lag in polynomial, degree of Hermite polynomial, and degree of Hermite coefficient 
polynomial.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Model % Model % Model % Model %
10100 95 10100 96 10100 92 10100 88
11100 3 20100 3 10110 4 11100 7
20100 1 10110 1 11100 2 10110 1
21100 1 20100 2 10120

20100
21100
11111

1
1
1
1

Scenario 5 Scenario 6 Scenario 7 Scenario 8
Model % Model % Model % Model %
10100 90 10100 77 10100 46 10111 25
10110 5 10110 12 10110 25 10100 IS
20100 3 11110 4 10111 S 10110 15
11100 1 11100 3 10121 7 10121 11
10120 1 10111 1 10120 6 11110 10

10120 1 11110 3 11120 6
12110 1 10130 1 10120 4
20100 1 11100

11120
11130
12110

1
1
1
1

12120
10131
11130
10112
11111
15110
21120

3
2
2
1
1
1
1
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T ab le  2.4: SNP Search for 1500 Sample Size

Scenario 1 Scenario •2 Scenario 3 Scenario 4
Model % Model % Model % Model %
10100 96 10100 96 10100 85 10100 57
10110 •2 11100 4 11100 11 11100 15
20100 1 20100 -2 1*2100 9
11100 1 1-2100 1 13100 5

13100 1 11111 •2
15100 2
16100 2
11121 1
14100 1
14110 1
15110 1
16110 1
16111 1
18100 1
•25100 1

Scenario 5 Scenario 6 Scenario 7 Scenario 8
Model % Model % Model % Model %
10100 89 10111 43 10111 41 12120 12
10110 9 10100 30 10121 13 10131 11
10120 1 10110 10 11110 11 10121 10
11110 1 10120 6 11111 8 11110 8

10121 4 11121 8 10121 7
11110 2 10131 i 11140 7
12120 •2 10111 5 10111 5
11111 1 12120 3 11130 5
•20111 1 10120 -2 13120 5
•20120 1 10141 1 10122 4

12110 1 12130 4
11111 1
11141 1
11150 1
11160 1
1*2110 1
14120 1
•21120 1
•21140 1
•22120 1
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Table 2.5: Sample Size and SNP Search 
For -500 and 1500 sample sizes, results are the top choices among 100 replications. 
For 5000, 10000, and 50000 sample sizes, results are single trials. Schwartz’s BIC is 
used in the optimal model selection. The benchmark model is Scenario 8 in Table 
2 . 1 .

Sample Size SNP Specification
500 10111

1500 12120
5000 12160

10000 12161
50000 16161
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Table 2.6: Quantiles and Mean

The number of Monte Carlo replications is 1000.

5% 25% 50% 75% 95%
True Value Quantile Quantile Median Quantile Quantile Mean

QMLE: 500 Sample Size
a0= 2.491 2.0472 2.3190 2.4932 2.7S47 3.1932 2.5652
a! =-0.285 -0.3682 -0.3211 -0.2921 -0.2653 -0.2315 -0.2950
60=  1.100 1.0313 1.073S 1.1015 1.1313 1.1737 1.1023

QMLE: 1500 Sample Size
a 0=  2.491 2.1S37 2.35S1 2.4916 2.6591 2.S764 2.5134
a t =-0.285 -0.3332 -0.3023 -0.2861 -0.2706 -0.2472 -0.2870
bQ=  1.100 1.060S 1.0842 1.0999 1.1174 1.1429 1.1003

EMM Autom atic Score: 500 Sample Size
a 0=  2.491 1.9677 2.2767 2.5039 2.7394 3.2655 2.5789
a t =-0.285 -0.4007 -0.3215 -0.2899 -0.25S8 -0.2193 -0.3014
b0=  1.100 0.9883 1.0512 1.0858 1.1097 1.1577 1.0819

EMM Automatic Score: 1500 Sample Size
a0=  2.491 2.1244 2.3172 2.4591 2.5906 2.8751 2.4851
a!=-0.2S5 -0.3401 -0.3014 -0.2846 -0.2678 -0.2409 -0.2872
60=  1.100 1.0356 1.0713 1.0898 1.1056 1.1440 1.0898

EMM Fixed Score: 500 Sample Size
a0=  2.491 2.1076 2.4066 2.5343 2.7463 3.3419 2.6233

=-0.285 -0.4158 -0.3357 -0.3048 -0.2820 -0.2460 -0.3160
60=  1.100 0.9617 1.0540 1.0909 1.1072 1.1571 1.0782

EMM Fixed Score: 1500 Sample Size
a0=  2.491 2.1925 2.3529 2.4737 2.6013 2.8268 2.4843
ai=-0.285 -0.3321 -0.3023 -0.2850 -0.2712 -0.2486 -0.2872
60=  1.100 1.0420 1.0715 1.0877 1.1040 1.1247 1.0863

MLE: 500 Sample Size
a0=  2.491 2.2021 2.3746 2.4231 2.4575 2.5106 2.407S
ai =-0.285 -0.3109 -0.2920 -0.2821 -0.2591 --0.2377 -0.2765
60=  1.100 1.0239 1.0756 1.1060 1.1286 1.1704 1.1024

MLE: 1500 Sample Size
a0=  2.491 2.30S6 2.3888 2.4386 2.4624 2.5008 2.4274
a ! =-0.285 -0.3026 -0.2879 -0.2840 -0.2693 --0.2520 -0.2792
60=  1.100 1.0555 1.0793 1.1000 1.1169 1.1399 1.0984
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Table 2.7: Accuracy and Efficiency

The number of Monte Carlo replications is 1000.

True Value Mean Bias Median Bias RMSE

a0= 2.491
QMLE: 500 Sample Size 

0.0742 0.0022 0.3613
a i =-0.285 -0.0100 -0.0071 0.044S
60=  1.100 0.0023 0.0015 0.0430

a0=  2.491
QMLE: 1500 Sample Size 

0.0224 0.0006 0.2111
a ! =-0.285 -0.0020 -0.0011 0.0258
60=  1.100 0.0003 -0.0001 0.0246

EMM Autom atic Score: 500 Sample Size
a0=  2.491 0.0S79 0.0129 0.6684
cti=-0.2S5 -0.0164 -0.0049 0.1017
60=  1.100 -0.01S1 -0.0142 0.0764

EMM Autom atic Score: 1500 Sample Size
a0= 2.491 -0.0059 -0.0319 0.3305

a II 1 o io CO Of -0.0022 0.0004 0.0384
60=  1.100 -0.0102 -0.0102 0.0401

EMM Fixed Score: 500 Sample Size
a0= 2.491 0.1323 0.0433 0.4891
a t =-0.285 -0.0310 -0.0199 0.0694
b0= 1.100 -0.021S -0.0091 0.0618

EMM Fixed Score: 1500 Sample Size
a0= 2.491 -0.0067 -0.0173 0.2000
ai =-0.285 -0.0022 -0.0000 0.0257
60=  1.100 -0.0137 -0.0122 0.0296

a0= 2.491
MLE: 500 Sample Size 

-0.0832 -0.0679 0.1337
ai=-0.285 0.0085 0.0029 0.0251
60=  1.100 0.0024 0.0060 0.0432

a0=  2.491
MLE: 1500 Sample Size 

-0.0663 -0.0524 0.0923
a i=-0.2S5 0.0058 0.0010 0.0161
b0= 1.100 -0.0016 0.0000 0.0263
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T ab le  2 .8 : Relative Efficiency of QMLE and EMM 
The theoretical relative efficiencies of QMLE and EMM are the asym ptotic variance 
ratios of MLE over QMLE and EMM. In a  finite sample Monte Carlo study, they are 
approximated by the ratios of RMSEs.

QMLE 
T =  500 T  =  1500

EMM A utom atic Score 
T  =  500 T =  1500

EMM Fixed Score 
T =  500 T =  1500

O-Q
a l
bo

37.01% 43.72% 
56.03% 62.40% 

100.47% 106.91%

20.11%
24.68%
56.54%

27.93%
41.82%
65.59%

27.34% 46.15% 
36.17% 62.65% 
69.90% 88.85%

T ab le  2.9: Likelihood Ratio Test for MLE and QMLE 
The likelihood ratio test statistics is 2 (£ n(0 ') — Cn(60)), where Cn(0“) is the uncon­
strained loglikelihood value with optimized param eters and Cn{9°) is the constrained 
loglikelihood value with true param eters.

Maximum Likelihood Quasi-Maximum Likelihood 
Test Level 500 Sample 1500 Sample 500 Sample 1500 Sample

99% 100.0% 100.0% 97.6% 97.0%
95% 99.0% 99.7% 91.5% 91.4%
90% 98.1% 98.8% 86.7% S6.7%
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T ab le  2.10: p-Value Adjustm ent for EMM Specification Test 
The theoretical distribution of the test statistics is A’2(5) for T  =  500 and X 2(7) 
for T  = 1500. The adjustm ent is based on the sampling distribution of each 1000 
simulations.

Theoretical 
p-Value

Adjusted p-Value 
T  = 500 T  = 1500

0.10 0.24 0.16
0.09 0.22 0.15
0.08 0.21 0.14
0.07 0.20 0.13
0.06 0.19 0.12
0.05 0.17 0.10
0.04 0.16 0.09
0.03 0.14 0.08
0.02 0.11 0.06
0.01 o.os 0.05
10"3 0.034 0.019
10"4 0.018 0.007
10-5 0.013 0.004
10"6 0.010 0.003
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F ig u re  2.1: 5% Rejection Rate of EMM T  =  500 with Autom atic Score Generator. 
The occurrence rate is the frequency of the same moment choice divided by 1000. 
The rejection rate is the frequency of rejections divided by the number of occurrences.
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F ig u re  2 .2 : 5% Rejection Rate of EMM T  =  1500 with Automatic Score Generator. 
The occurrence rate  is the frequency of the same moment choice divided by 1000. 
The rejection rate is the frequency of rejections divided by the number of occurrences.
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F ig u re  2.3: Overrejection Curve of EMM with. Fixed Score Generator
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F ig u re  2.4: 5% Rejection of Misspecified Model T  =  500 
The occurrence rate  is the frequency of the  same moment choice divided by 1000. 
The rejection rate is the frequency of rejections divided by the number of occurrences.
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F ig u re  2.5: 5% Rejection of Misspecified Model T  =  1500 
The occurrence rate is the frequency of the same moment choice divided by 1000. 
The rejection rate is the frequency of rejections divided by the num ber of occurrences.
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F ig u re  2 .6 : Rejection Curves of Misspecified Model with Fixed Score Generator
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Chapter 3

Estim ation of A  Jum p-Diffusion Term  
Structure M odel

'T h is chapter develops a  M ultivariate Weighted Nonlinear Least Square estim ator 

for a class of jump-diffusion interest rate processes (hereafter MWNLS-JD), which 

also adm it closed-form solutions to bond prices under an equilibrium no-arbitrage 

argum ent. The instantaneous interest rate is modeled as a mixture of a continuous 

square-root diffusion and a discrete Poisson jum p process, where the jum p-rate and 

size can be constants, state-dependent functions, or independent random variables. 

We can derive analytically the first four conditional moments, which form the basis 

of our MWNLS-JD estim ator. A diagnostic conditional moment test and a classical 

Lagrange multiplier test can also be constructed from the fitted moment conditions. 

The market prices of diffusion and jum p risks are calibrated by minimizing the pricing 

errors between a model-implied yield curve and a target yield curve. The time series 

estim ation of short rate suggests th a t the jum p augmentation is highly significant 

and tha t the pure diffusion process is strongly rejected. The cross sectional evidence 

indicates that the jump-diffusion yield curves are much more flexible in reducing the 

pricing errors. Comparative statics are also consistent with economic intuitions, with 

the yield curves being more sensitive to factor risk and risk premium parameters.

3.1 Introduction

The famous square-root model by Cox, Ingersoll, and Ross (1985b) (CIR), although 

appealing in its general equilibrium nature and closed-form solution, is widely rejected

1The material of this paper also appears in Zhou (1999b).
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in empirical applications. Brown ancl Dybvig (19S6) first documented the difficulty in 

fitting the CIR model to US interest rates, especially for the volatile period 1978-1982. 

More recently, rigorous specification tests all rejected the square-root model, using 

the historical short rate data  (ATt-Sahalia 1996b, Conley et al. 1997a, Gallant and 

Tauchen 199Sb).2 In tim e series perspective, underfitting the volatility param eter is 

the m ajor cause for rejecting the short rate  dynamics. In cross-sectional perspective, 

the pricing error of term  structure is large when the understated volatility param eter 

reduces the flexibility of yield curves. As argued by Zhou (1999a) in a Monte Carlo 

study, square-root process can not model both the mean persistence and the variance 

persistence simultaneously, due to the stationarity  condition and the given level of 

average interest rate.

Consequently, efforts to modify the square-root model largely concentrate on more 

flexible specifications of the volatility function. It is clear tha t the CIR model is just 

one special case of so-called linear CEV (constant elasticity of volatility) specifica­

tion, where elasticity equals one half. Recent comparative studies (Chan, Karolyi, 

Longstaff, and Sanders 1992, Conley et al. 1997a, Tauchen 1996) found tha t elastic­

ity close to one is marginally acceptable. Alternatively, one can free the specifica­

tion of the diffusion function and estim ate the volatility process nonparametrically 

(Ai't-Sahalia 1996a, Stanton 1997). This approach exploits the long run invariant 

distribution of the short rate dynamics. Their empirical results suggest that the 

square-root model fits reasonably well for the medium range of interest rates; but 

the model entirely misses the nonlinear volatility feature at either the low end or 

the high end of short-rate levels. A nother pertinent approach is to introduce an

2The bivariate extensions o f CIR specification (Gibbons and Ramaswamy 1993. Chen and Scott 
1993. Pearson and Sun 1994) also meet with poor empirical performance. Duffie and Singleton 
(1997) found favorable evidence for a two factor CIR model with serially-correlated error structure. 
Dai and Singleton (2000) estimated a  three-factor affine model similar to Chen (1996) and passed 
the specification test. These two studies only use the swap yields data from 1987 to 1996. When 
fitting the same specifications to US Treasury yields from 1964 to 1995, they are strongly rejected 
(Bansal, Hsieh, and Shen 1998).
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unobserved stochastic volatility factor into the diffusion function, and finds consider­

able improvement in the specification test (Andersen and Lund 1998, Andersen and 

Lund 1997). Since the dimension and functional form of the latent factor are not very 

restrictive, the stochastic volatility model is cable of capturing both the long memory 

and the asymmetric features of the  short rate process. The more recent approach 

in literature is the jump-diffusion interest rate (Das 1998), with a constant diffusion 

function (Vasicek 1977) and an independent jum p term. Under this setting, the un­

conditional volatility structure is enriched, while the conditional volatility persistence 

is still absent.

This essay follows the jump-diffusion approach in term  structure literature (Das 

1998) and allows for time-varying volatility persistence. The jump-diffusion approach 

in equity return literature (for example, see Merton (1976) and Bates (1996)) is not 

directly applicable to the interest rate dynamics. In those models, the tim ing of the 

jum ps does not affect the evolution of the return sample path, since the observed 

asset return does not feed back into the local mean and variance functions. In other 

words, a jum p may shift the asset price up and down, but it has no impact on the 

trend or fluctuation of the returns, which is the intrinsic feature of any lognormal as­

set pricing model (Ingersoll 1987). But for interest rates data, the tim e varying mean 

reversion and volatility persistence are strongly related to the short rate level. Also 

the CIR model is a better starting  point to model the short rate, because it already 

incorporates the tim e varying volatility, it automatically satisfies the nonnegativity 

constraint, and it has inherent nonsym m etry and fatter right tail. The conditional 

volatility persistence can be enhanced by introducing jum ps, without violating the 

stationarity assumption of the square-root diffusion component. Since the jum p ef­

fects are directly observable through the state  variable, a  variety of jump-diffusion 

specifications can sustain closed-form or near closed form solutions to the term  struc-
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ture. This is a clear advantage compared to the other modeling strategies, requiring 

numerical simulation to calculate the derivative prices. Since the choices of jum p-rate 

and jump-size function are flexible, the fitting of cross sectional term  structure may 

produce smaller pricing error.

Conceptually, the jump-diffusion approach is more similar to the stochastic volatil­

ity strategy, but with better economic interpretation. The information arrivals on 

the financial markets can be either gradual, small perturbations or sudden, large 

shocks (Merton 1976). The examples of microeconomic information flow include the 

tem porary imbalances of supply and demand, the change of economic outlook among 

a small number of market participants, or earning reports from several large com­

panies within a week. On the other hand, the Federal Reserve Board may adjust 

the discount rate by a quarter percent, the OPEC oil agreement can produce a sup­

ply shock, the Asian or Russian financial crises may affect assets demand across the 

world. These macroeconomic information shocks may completely alter the market 

perception of the economic fundam entals.3 By the very nature, they arrive only ran­

domly at certain points of time, and their impacts on the m arket movement are in 

large, discrete sizes. Those discrete-size information shocks are reflected in financial 

market as data outliers. Many times the continuous sample path  distributions (e.g., 

the CIR model) fail to explain the extraordinary volatility structure, since the empir­

ical data  is typically asymm etric and has a fat tail. However, the occasional volatility 

cluster is the feature of asset returns, and the equilibrium no-arbitrage pricing theory 

requires tha t the empirical methods be able to capture and explain both the smooth 

and the rough periods of the financial markets. A m ixture model of a continuous 

Brownian motion and a discrete Poisson jum p may be capable of capturing the real 

tim e evolution of most financial asset prices (Ingersoll 1987).

A lternatively, one can model these discrete changes o f  interest rates dynamics as regime shifts 
and solve the entire term structure consistently by an equilibrium pricing technique (Bansal and 
Zhou 1999).

4S
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The Innovation of this study is to generate the parametric moment conditions 

and to construct an efficient MWNLS-JD estim ator with diagnostics. Maximum 

Likelihood Estimation is available only for a very restricted class of jump-diffusion 

models (Lo 19SS). Our m ethod differs with the infinitesimal generator of Hansen and 

Scheinkman (1995) in tha t it exploits the conditional information, does not relies on 

simulations as do Duffie and Singleton (1993), uses model-dependent moments instead 

of data-dependent moments (Gallant and Tauchen 1996b), generalizes to an arbitrary 

number of moments rather than only to conditional mean and variance (Fisher and 

Gilles 1996), and has faster solutions for both estim ation and pricing in comparison 

with the nonparametric approach (Ai’t-Sahalia 1996a). As shown below, our method 

reduces a complicated task of solving a stochastic differential equation (SDE) to 

a simple m atrix solution of an ordinary differential equation (ODE) system. The 

solution becomes a linear least square problem with nonlinear param eter constraints, 

or at most a multivariate nonlinear least square problem. The com putational burden 

is reduced to only few minutes. In the literature, those studies that are closely related 

are the nonparametric regression m ethod with stochastic Taylor series approximation 

(Stanton 1997) and the generalized eigenvalue-eigenfunction method with orthogonal 

series approximation (Conley e t al. 1997b). The distinct feature of my essay is the 

maximum exploitation of the param etric information, which is contained in the drift, 

diffusion, and jum p specifications.

The body of this paper is organized as follows: Section 3.2 applies the m artin­

gale pricing technique to the jump-diffusion term  structure and derives closed-form 

solutions to bond prices for a special class of interest rate models; Section 3.3 charac­

terizes the first four conditional moments and constructs an efficient estim ator with 

diagnostics testing; Section 3.4 implements the jump-diffusion term  structure empir­

ically and studies the comparative statics of the fitted yield curves; and Section 3.5
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concludes.

3.2 Term Structure in a Jump-DifFusion Economy

The classical martingale pricing result can be extended to the jump-diffusion envi­

ronment by appropriately adjusting the non-central tendency of the jum p process. 

Given an underlying process of the instantaneous interest rate, the crucial step is to 

correctly choose the market-price-of-risk process, which should be supported by the 

underlying equilibrium economy. Once this is done, the solution to discount bond 

prices falls out naturally.

3.2.1 Short R ate Process and No-Arbitrage Pricing

Suppose that the evolution of short interest rates is governed by a square-root jum p- 

diffusion process

drt =  k ( 9  — rt )dt +  <Ty/FtdWt +  J{-)dt\T(p(-)t), (3.1)

where \Vt is a standard Brownian motion, N(p(-)t) is a Poisson jum p driving process 

with an intensity function p(-). For the square-root part, k is the mean reversion 

param eter, 0 is the long-run mean param eter, and a  is the local variance param eter. 

For the jum p part, </(•) is the jump-size function. Both the jum p-rate and jump-size 

can be constants, functions of state  variables, or other independent random variables. 

The state-dependent drift and diffusion functions feature time-varying mean reversion 

and volatility persistence. If a jum p occurs at a high interest rate, both the local 

variance and the mean reversion are discretely large, and the volatility clustering is 

enhanced. On the other hand, if a jum p occurs at a lower interest ra te  level, the 

local variance is ju st slightly increased, while the mean reversion to the center is even 

reduced. The intrinsic asymm etric responses of the interest rate level and volatility
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to the discrete jum ps are indeed driving our empirical yield curves to fit the term  

structure.

Certain regularity assumptions need to be imposed. The restrictions on the 

square-root part is offered by Feller (1951),

A ssu m p tio n  1 (D iffu sion ) k > 0, 0 >  0, and a 2 < 2k0,

which ensures tha t the diffusion is in the domain (0, oc). Zero is not accessible unless 

as a  starting  value, and the process never explodes to infinity. It also implies a 

noncentral chi-square transitional distribution and a gamma steady-state marginal 

distribution.

The next assumption serves to exclude the technical arbitrage from tampering 

with jum p information.

A ssu m p tio n  2 ( J u m p )  p(-) € T f  and ./(•) G F r >

which says tha t both the jum p-intensity and the jump-size functions at tim e t should 

only depend on the left limit of r(t) to preserve the Markov property. In other words, 

if one knows the information of the exact jum p timing and jump-size at an instant 

before a jum p occurs, one can make an arbitrarily  large profit with certainty.

Apart from above assumptions about the pure square-root diffusion and the pure 

Poisson jum p processes, additional restrictions should be applied when the two parts 

are put together to guarantee closed-form solutions for both conditional moments 

and bond prices.

A ss u m p tio n  3 (C o n fo rm ity  a n d  P r ic in g )  0 <  p(-) < oo. — rt_ < ./(•) <  oo.

This assumption implies tha t when a jum p occurs, the regularity conditions of the 

square-root diffusion are always satisfied (nonnegativity, not accessible to zero, and 

non-explosion). In addition, all the moments of the jum p term  will have closed form
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solutions, since both p(-) and J(-) are not state-dependent, or a t most one of them  is 

linearly dependent on the s ta te  variable. When the jum p part is shut down (/?(•) =  0), 

it reduces to square-root diffusion.

A m ajor proposition following Assumptions 1-3 is that the jump-diffusion process 

(3.1) is well-defined and can be constructed properly. To see this, consider the time 

period from zero until the first jum p occurs. Before the jum p, the process evolves as a 

square-root diffusion process. By the standard change of measure and change of time 

techniques, one can recover the Browning motion. As long as a standard Brownian 

motion can be constructed, the above argument can be reverted to construct the 

diffusion part. When the jum p occurs, the process is reinitialized a t a new starting 

value, which is within the domain of the diffusion part. Assumption 1 ensures tha t the 

diffusion is Markov; Assumption 2 ensures tha t the jum p is Markov; and Assumption 

3 ensures th a t the combined jump-diffusion remains a well-defined Markov process. 

This construction procedure extends to any point in time. The jump-diffusion process 

defined as above has a unique strong solution.

To price a discount bond or any interest rate derivative, one requires a well jus­

tified stochastic discount factor. It is a well-known fact that the market-price-of-risk 

processes must be proportional to the standard deviation of the normalized risk fac­

tor. The corresponding pricing kernel is specified as

—JTT =  ~ r tdt -  — y/ndlVt -  \j[dN{p{-)t)  -  p(-)dt], (3.2)
7T( t  j <T

where Aik is the diffusion risk prem ium  param eter and A j  is the jum p risk premium 

param eter. The functional form of Aw/cr^/Ft is in accordance with the square-root 

literature (Cox et al. 1985a), and the choice of parameter A j  extends the constant 

volatility specification of Vasicek (1977) to the cases of constant or state-dependent 

jum p-rate with independent jump-size. The instantaneous expectation of jum p pre-
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mium is proportional to instantaneous jum p risk. These specifications are supported 

by the underlying equilibrium economy.4 In fact, the decomposition of the total risk 

premium into the diffusion part and the jum p part are fully identifiable, since the 

former will be time-varying in proportion to the square-root of short rate level while 

the latter will be paid constantly or linearly over time. Among the four specifications 

considered below, model 1 (no jum p), model 2 (state-independent jum p), and model 

3 (state-dependent jum p-rate) are fully backed by underlying economic equilibrium, 

but model 4 (state-dependent jump-size) is only justifiable under the no-arbitrage 

argument.

Given the short rate process, the bond process can be spelled out. The price of 

a discount bond P(t)  =  P (r t, t , T )  at tim e t with T  — I m aturity  is conjectured to 

be log-linear P (r t, T  — t) =  A ( T  — t) exp{ — B ( T  — t) r t} with the boundary condition 

P (rT -T .T )  =  1. Ito’s formula delivers an instant bond return process

=  np{t)dt  +  aP(t)dWt +  J P(t)dN(p(-)t),  (3.3)

where /J,p(t), crp(f), and Jp(t)  are the instantaneous drift, diffusion, and jum p func­

tions given by

a P{t) =

M i )  =

PrK(0 -  r) +  \Prr°-T  +  Pt
p

PrCTy/r 

p  ’

P{r  +  •/(•), T  — t) — P(r,  T  — t)

To ease the notational burden, the  dependence on tim e t is suppressed. Applying the

4A counter example is given by Cox et al. (1985a), in which a linear risk premium is specified by 
the no-arbitrage approach while the underlying factor is a square-root process. It implies that 
the equilibrium bond return over-pays a constant premium, even when the interest rate is zero, 
which becomes a riskless arbitrage opportunity.
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martingale pricing result (Appendix A), we can show that

Hp(t) = r t + — y/rl(Tp(t) + p(-)(Xj  -  l ) £ [ J p ( f )], (3.4)
(7

which simply says tha t the instantaneous bond return should be equal to the “risk 

free” rate plus total risk premium. The risk premium from either the diffusion factor 

or the jum p factor, is simply the product of the bond’s risk exposure to that factor and 

the factor premium per unit of risk. Such an interpretation of the equilibrium pricing 

condition is in line with the Arbitrage Pricing Theory (APT) (Ingersoll 19S7). Notice 

tha t the noncentral tendency of the jum p process p(-)E[Jp(t)] needs to be adjusted 

in the jum p risk premium. This tendency is indeed the “drift” of the jum p process. 

One thus reaches the fundam ental valuation equation for bond pricing

\<r2rPrr + K(0 -  r)Pr + Pt - r P - \ w rPr + p(-)(l -  AJ )P E J[.)[e- BJU -  1] =  0, (3.5)

It is clear tha t particular restrictions on the jum p term  are driven by the tractabil- 

ity o f Ej(.)[e~BJ^  — 1]. To make the expectation solvable without imposing additional 

restrictions on the ordinary differential equation system, the choices of jump-size dis­

tribution are only normal and uniform (or constant as a degenerate case). To guar­

antee the nonnegativity of the jump-diffusion interest rate, only the uniform random 

variable can enforce no-arbitrage condition. It is also attractive to have an upper 

bound on the jump-size, which is meaningful in a  large stable economy. A more 

interesting model would allow the short-rate level to feed back into the jum p-rate 

and /or jump-size process, affecting more than the mean reversion and conditional 

volatility. To reduce the redundancy, we only let the jum p-rate or the jump-size be 

state-dependent, but not both. However, since the jum ps still feed into the drift, dif­

fusion, and jum p-rate functions through the short rate  level, the am plitude of jumps 

can still be identified by the intensified mean-reversion, volatility clustering, and/or 

time-varying jum p probability.
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3.2.2 Jump Specifications and Closed-Form Solutions

Various jump-diffusion processes are outlined here to facilitate the empirical com­

parison. Model 1, 2, and 3 bellow are fully supported by the underlying equilibrium 

economy, with closed-form solutions. However, model 4 is only justifiable by a no- 

arbitrage argument, with an approxim ate solution.

M odel 1 , Square-Root Diffusion. If the jum p term is shut down by letting 

p =  0, the model reduces to the well-known CIR specification

drt =  k (6 — rt)dt +  <jyfFtdWt ,

and the pricing partial differential-difference equation (3.4) is reduced to

1 4 '
- B 2c 2r — B kO +  B kt — +  B'i—  r + Xw Br  = 0.
2 A

The exact solution is already known (Cox et al. 1985a). Despite its general equilib­

rium feature and tractability for derivative pricing, the majority of empirical studies 

have rejected the model. We use CIR specification as a benchmark, to measure 

whether the jum p augmentation can improve the term  structure fitting. For the 

purpose of comparison, we retain the solutions in ordinary differential equation form,

B ‘ =  1 -  \<t2B 2 -  (Xlv +  k)B,  (3.6)

^  =  - k6B.  (3.7)

The Ricatti type ODEs can be easily solved numerically with the Runge-Kutta 

m ethod (Press, Teukolsky, Vetterling, and Flanney 1996).

M odel 2, Square-Root Diffusion w ith Independent Jum p. The jum p term  

is driven by a Poisson process with a constant rate  p, and the jump-size J  follows a 

uniform distribution with constant lower bound a and upper bound 6

drt =  k (6 — r t)dt + <TyfFtdW t +  JdN(pt ) .
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T h e sp ecifica tion  is co n sisten t w ith  th e  econ om ic reality  that any p oten tia l interest- 

rate ju m p  should  be b oun d ed . T h e  partia l d ifferential-difference eq u ation  (P D D E )  

boils down to

1 A'
— B 2cr2r — BkO +  B u r    +  B'r  — r +  A w B r
2 A

p - B b  _  p -Ba .

+ , ( 1  -  AjHexpf _ B i b _ a] } -  1) =  0,

and the so lu tion  O D E s are

B'  =  1 -  \(72B 2 -  ( \ w  +  k )5 , (3.S)

A' e~Bb — e~Ba
=  - kOB +  ,(1  -  Aj)(exp{ -_g  -  1). (3.9)

If the ju m p  does not occur (p =  0 ), th e  pricing form ula sim p ly  reduces to  th e square- 

root m od el. If th e m arket price for ju m p  risk A j  =  1. ju m p  risk is “neutral” and does  

not con tr ib u te to th e  d eterm in a tio n  o f  th e  bond price, but th e param eter estim ates  

o f  the short rate part are s t ill  a ffected  by adding th e  ju m p  term . A fter de-trend ing  

th e  jum p risk, the ap propriate m easure o f  risk prem ium  should  be Xj — 1 instead  o f  

A j .  If A j  =  1, th e rep resen tative  agent is risk-neutral to  th e centered  ju m p  risk, ju st  

as is Ajf =  0 w hen th e  agent is r isk-neutral to  th e  diffusion risk.

M odel 3, Square-Root D iffusion w ith State-D ependent Jum p-R ate.5 

T h e ju m p -size  d istribu tion  is s till th e  uniform  as in m od el 2, w hile the ju m p  rate is 

specified  as a linear fu n ction  o f  th e  s ta te  variable p(-) =  p0 + p i r £,

drt =  k(6 — r t)dt +  cry/rtdW t +  Jd N ( (p 0 +  pir t)t).

T h is is a  p o ten tia lly  m ore in terestin g  m od el, s in ce  it allow s m ean  reversion in th e

ju m p  tim in g , if /o0 >  0 and pi <  0. It also im p lies that th e  short rate is m ore

°Duffie, Pan, and Singleton (1999) discuss a similar class of multivariate affine jump-diffusion pro­
cesses, Chernov, Gallant, Ghysels, and Tauchen (1999) extend it a non-affine class of models, and 
Drost, Nijman, and Werker (1998) emphasize on testing the GARCH jump-diffusion specification.
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leptokurtotic at lower levels, but looks more Gaussian at higher levels. The pricing 

PDDE now becomes

}-B2a 2r -  B kQ +  B n r  -  4  +  B'r  -  r +  \ w B r  
2 A

- B b _  - B a
+(po +  Pirt){l -  Aj)(exp{ } -  1) =  0,

and the solution ODES are

1 e~Bb— e~Ba
Bf =  l - g g 2Bi - ( A w. +  n ) B - /> , ( l - A J )(exp{ _ g ( b _  -y ] -  1), (3.10)

A 1 e - 8 t ‘ _ e - B a
-  = —kOB +  Po{l — Aj)(exp{ } _ ! ) •  (3.11)

One can easily see the hierarchical relationship between model 1, 2, and 3. It is 

interesting tha t even though the jum p-rate is state-dependent, the pricing kernel laid 

out in section 3.2.1 is still compatible with underlying equilibrium, because the market 

price of jum p risk has already incorporated the contribution of the state-dependent 

jum p-rate Aj[dN(p(-)i) — p(-)dt\.

M o d e l 4, S q u a re -R o o t D iffu sio n  w ith  S ta te -D e p e n d e n t Ju m p -S iz e . Al­

ternatively, one can let the jump-size be a linear deterministic function of the state 

variable J  =  Jq — r t . This specification is parsimonious and guarantees closed-form 

solutions of the conditional moments (see Section 3.3.1 for details). To retain a near 

closed-form pricing solution, we have to restrict the jum p rate to a  constant (p),

drt =  k ( 9  — r t)dt +  <j^Jr[dWt +  ( J q — rt)dN(pt).

A tricky point in solving the pricing PDDE (3.4 ) is to approximate the deterministic 

difference term  by a first-order Taylor expansion

e - B ( /o - r t) _  x ^  _  r t^
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which is extrem ely accurate since the difference term  is very close to zero. Hence the 

pricing PDDE is approximately

- B 2a 2r — B kO +  B u r  — +  B'r  — r +  Aw B r  — p{ 1 — Xj )B (J q — r t) «  0,
2 A.

and the solution ODEs are

B'  «  l - \ v 2B 2 ~ { \ w  + k )B  -  p ( l - \ j ) B ,  (3.12)

A  «  - K 0 B - p ( l - X j ) J oB.  (3.13)

It must be pointed out that the pricing kernel in section 3.2.1 is not compatible 

with economic equilibrium implied by this short rate specification, since the market 

price of jum p risk Aj[dN(pt)  — pdt] is not proportional to the centered jum p risk 

(Jo — rt)[dN{pt) — pdt]. Nevertheless, the approxim ate solution is guaranteed by the 

simple no-arbitrage rule.

Our empirical study will cover each of the four models to illustrate the improve­

ment in matching the yield curve when discrete jum ps are allowed. Keep in mind that

the entire term  structure may depend on more than one factor. W hat we illustrate

here is only an effort to better capture the the short-end dynamics of the interest 

rate.

3.3 M oment Generator and Efficient Estimation

The innovation of this paper is to characterize all the conditional moments of a 

square-root jump-diffusion process in a convenient m atrix form. In particular, the 

martingale property of the Generalized Ito process is exploited to derive the lower- 

order four conditional moments. Only conditional mean and variance will not be 

adequate for identifying the jum p im pact. An efficient estim ation strategy is also 

constructed, together with several specification tests.
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3.3.1 A Characterization o f Conditional Moment

Let’s start with an example on how to derive the conditional mean of the square-root 

independent jum p process (model 2):

drt =  k(9 — r t )dt + a^/FtdWt +  JdN(pt) .

Applying Ito’s Lemma to r 3 for s >  t as a function of r t . and taking conditional 

expectation with respect to t, vve have

Et(ra) = r t + E t [k(0 -  r u) +  pEj(J) \du .

Notice that the conditional expectation of the local martingale /* cr^/rZdu is equal 

to zero. Interchanging the expectation operator with the integration operator, and 

taking derivative with respect to the tim e s on both sides, we arrive at

dEdr . )
— =  k6 + p E j ( J )  -  KEt{ra),

which is a linear first-order differential equation. Its solution is given by standard 

text books. Using the boundary condition E t(rt) =  rt, it is straightforward to show 

that

E,(rr) =  _  e—(T-.jj.
AC

For reassurance, notice tha t when the jum p term  turns off (p =  0), it reduces to the 

conditional mean of Cox et al. (1985a)

E t(rT) =  +  0(1 -  e - 'c(7’- t)).

This strategy is well-known in literature (Kloeden and Platen 1992, Ivushner and 

Dupuis 1992, Fisher and Gilles 1996), and we simply extend it to an arbitrary vector 

of moments.
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Now let’s focus on the first four conditional moments of the special jump-difFusion 

processes proposed earlier

r Et{r.) 1

Et(r33)
. Et(r<) .

drt = k (9 — r t)dt + a^/FtdWt +  J(-)dN(p(-)t) .

Let Rs = [rJ, r 2, r 3, r Jl]/ be the column vector of the first four powers of r, for some 

s  > t. An extended version of Ito’s formula (see Kushner (1967) and Protter (1992)) 

delivers Et(Rs) =  [Et(r3), E t(r2), E t(r2), Et(r*)}' in a m atrix form

r t +  E t f t{K(0  -  r u) +  p{-)E[{ru +  J (-)) -  ru]}du
r2 +  E t St3{2ruK(0 -  r„) +  a 2ru +  p(-)E[(ru + J{-))2 -  rl]}du
i f  +  E t ft*{3r2K(0 -  r u) +  3rua 2ru +  p(-)E[(ru + J (-))3 -  r3]}du

. r +  E t / t*{4rf k(0 -  r u) +  6r'<T2r u +  p(-)E[{ru +  ./(-))4 -  r*]}du

So the conditional moment is simply the realization of the four powers of rt at the 

initial date plus the expected Riemann integral of the stochastic differential gener­

ated by Ito’s formula. If one observes the continuous tim e record, these moments of 

any jump-difFusion process can be calculated directly by numerical integration. Since 

the data is only available in discrete samples or since the continuous time record is 

contam inated by institution and microstructure noises, the main challenge remains to 

tackle the integration without relying on the actual sample path. For instance, Stan­

ton (1997) applied a stochastic Taylor series approximation to the integral and esti­

m ated by a nonparam etric kernel regression approach. Conley et al. (1997b) adopted 

an orthogonal series approximation in a general eigenvalue-eigenfunction framework. 

Fisher and Gilles (1996) proposed a quasi-maximum likelihood estim ator based on 

closed-form conditional mean and variance function for the affine diffusion process. 

The approach developed below is more general for any jump-difFusion process, and 

more straightforward for extending to any number of moments.

Taking derivatives of E t(Rs) with respect to the future tim e s and writing in
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m atrix form, we have a system of ordinary differential equations

= A E t(Rs) + g, (3.14)
as

where g is a 4 x 1 vector and A  is a 4 x 4 lower-triangle m atrix. They are nonlinear 

functions of the structural param eter vector /?, which is yet to be specified for a 

particular choice of the jum p-rate  and jum p-size functions. Since any random variable 

inside jump-size function ./(•) is defined as independent with both the Brownian 

motion and the Poisson jum p process,6 the  condition expectation Et(-) and Ej(-)  

can be exchanged by applying the Law of Iterated Expectations.

This is a linear first order differential equation system. It is non-homogeneous in 

having a forcing function g. The solution to the homogeneous part is fully determined 

by the fundamental m atrix A.  Since all the coefficients are not dependent on the 

tim e t. the system is tem porally homogeneous. Its solution comprises a fundamental 

solution plus a particular solution. Using the boundary condition Et(Rt) = Rt- we 

have a characterization of the conditional moments

E t{RT ) =  e{T~t)AR t + j \ (T~s)Agds

=  e ^ - W R t  +  eTAA ~ \ e ~ tA -  e~TA)g, (3.15)

where eA is the m atrix  exponential of A.7 The last step in equation (3.15) depends on

the fact tha t the vector g is time-homogeneous and also exploits the communicate and

6The first four moments of J  ~  Uniform[a,6], are respectively E j ( J ) =  ^ ^ - a j 1 = % ^ -a) •

E j ( J 3) =  ^(fcTa/» an(f E j ( J A) =  . They will be used later for calculating the conditional
moments of the short rate 

‘ Matrix exponential is defined as
,4fc

k—0
which is different from the exponential of each element in a matrix A.
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derivative properties of m atrix exponentials.8 Since the data are discretely sampled, 

we can always set t =  0 and T  =  1 to solve the system explicitly as

Eo(Ri) = eARq eAA l ( I  — e A)g,

where /  is a 4 x 4 identity m atrix. This generic solution requires tha t m atrix A  

is nonsingular, which is guaranteed if the mean reversion param eter k in the drift 

function of r t is nonzero.

The generic result can be written as a vector autoregressive function Et{Rt+1) =  

D R t +  C, or

‘ £«(r * + i) ' dn 0 0 0 ' ’ rt ’ Ci ‘
W + i ) ^21 d-n 0 0 r? + C2
£ « ( r ? + i ) 3̂1 dw d$z 0 r ? c3

L Et(rUi)  J .  d4i d4 2 d. 13 d, 14 . [ r ? \ . C.( .

where the constant m atrix D =  eA and vector C  =  eAA~l ( l  — e~A)g are nonlinear 

functions of the structural param eter vector /?, which is yet to be specified.9 Solutions 

for the vector ordinary differential system of various jump-diffusion specifications 

(models 1, 2, 3, and 4) are listed in Appendix B.

3.3.2 Estim ation and Inference

The above method can be used to generate conditional moments up to an arbitrary

order. Arguably, if the stochastic process has bounded conditional moments up to any

order as our jump-diffusion specification (3.1), fitting these moments will approach

the full recover of the distribution information. Given a particular set of moment

conditions, a judicious choice of an estim ation strategy can achieve the prescribed

8If matrices A  and B  are commutable, i.e. A B  =  B A , then eA+B =  eA eB . The formula for matrix 
derivative is detA /d t  =  A etA .

9D  and C  can be calculated by the matrix language in MATLAB or can be derived exactly in a 
FORTRAN program, since the exponential and inverse of an upper or lower-triangular matrix 
have closed form solutions.
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efficiency. The Multivariate Weighted Nonlinear Least Square for Jump-DifFusion 

(MWNLS-JD) estim ator constructed here is in the spirit of Gallant (19S7). The con­

sistency and asym ptotic normality results are standard; we simply verify several crit­

ical conditions and restate other technical assumptions. We also discuss a Lagrange 

multiplier test and a conditional moment test. Our focuses are on constructing the 

estim ator and making inferences.10

C on sisten cy

The moment condition (3.16) generated by Ito ’s formula in Section 3.3.1 justifies the 

nonlinear regression hypothesis

Rt+i — D Rt +  C  +  (Jt+i,

where Ut+i = [un+i, «2«+i; u ^ i ] '  is a vector of errors. W ith the data generating

process (3.1) and Assumption 1-3 of section 3.1, it clearly follows that 0 < R t < oo; 

hence E \R t \ < oo. This is equivalent to the strict stationary and ergodic condition. 

The nonlinear functions D =  eA and C  =  eAA ~ 1(I  — e~A)g derived in Section 3.3.1 

are obviously continuous. The param eter space B  for (3 € B  C is usually assumed 

to be compact. Thus the consistency result is primarily driven by the identification 

condition

C ond ition  1 (Identification) There exists (3q £  B C 'R1 such that Et(Ut+i ) =  0.

This condition is indeed the result of Section 3.3.1. The square-root diffusion part

is well-identified. Since jum ps are fed back into the drift and diffusion through the

short-rate level, the intensified mean reversion and volatility clustering can provide

10Our estimator is indeed a Classical Method o f Moments. If all the moments are finite, parameter 
estimation by matching the analytical moments to an arbitrary order will approach the efficiency 
of maximum likelihood estimation (Gallant and Tauchen 1998a). Singleton (1999) also discusses 
the asym ptotic efficiency of several estimators for the affine diffusion processes by exploiting the 
Conditional Characteristic Function.
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the identification for the discrete jum ps. In fact, the stationarity  assumption of the 

square-root process (cr2 <  2nd) always restricts the empirical estimation to underfit 

the conditional volatility.11 Our proposed model (3.1) circumvents this difficulty by 

jum p-augm enting the short-rate level to enhance the conditional volatility, without 

pushing the diffusion param eter into a  non-stationary region.

The nonlinear least-square estim ator solves the minimization problem:

2' _ i

m in Q t ({3) = ^  £  \ u t+l(R t+l, Rt,(3)'WT{Rl+il R tJ ) - lUt+l(Rt+u R t,P), (3.17)psb i  t=l _

where (3 is some consistent estim ator of /?, and the  weighting m atrix is a

4 x 4  symmetric, positive definite m atrix with probability one, usually constructed 

by

W t W  =  T  E  Uw m U w (0Y- (3.18)
1 t-l

Either a two-step or an iterated estim ator may apply. If R t is stationary, it is a typical 

assumption that W t( 0 )  Wo, where Wo is a sym m etric positive definite m atrix. 

The last building block of the consistency result is a uniform law of large numbers. 

Assumptions 1-3 of section 3.2 deliver an invariant probability measure P(Rt+1, Rt\@)-, 

which is Markovian and stationary. Let Q{j3) =  limr-»-co /  Qt(,3)<3P(-\0) be the 

population limit of the objective function, then a standard proof gives the result 

Qt(P )  Q{P) uniformly on B. In addition, assume that Q{/3) is continuous on B.  

Now we have the consistency result12

$  ^  0 O, (3.19)

l l See Zhou (1999a) for Monte Carlo evidence and Gallant and Tauchen (1998b) for empirical 
evidence.

12The maximum likelihood estimator of the uniform distribution parameters is not consistent, if 
one specifies the distribution as J  ~  Uniform (a, 6) instead o f J  ~  Uniform [a, 6]. However, this 
is not a concern for the method-of-moments estimator, because the objective function is smooth  
around the true parameters.
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where /? =  a rg m in ^ e  Qt (P).

A sy m p to tic  N o rm a li ty

The following condition greatly simplifies the derivation of the asym ptotic distribu­

tion and the construction of specification tests:

C o n d itio n  2 (N o  S e ria l C o rre la tio n )  For all t, E t(UtU't+j)  =  0, fo r  any j  > 1.

This condition is satisfied because our derived moment conditions are essentially mar­

tingale difference sequence (MDS). In other words, Ut is already in the information set 

at tim e t , therefore Et([JtU'[+j ) =  UtEt(Ut+j)' =  0 by the iterated law of expectations. 

W ith a little more effort, one can prove tha t the scores

* + , ( • , / ? )  =  ■fpU,+d;f3yWT(;0)-'Ul+l(;3)

are not serially correlated (Wooldridge 1994). Assume that /?0 is an interior point of 

a convex set B. Define the expected outer product of the scores as

J  =  j  » , + , ( • , 1/?)

and its empirical counterpart as

1 t=l

Standard argument leads to

V T -^ Q tWo) A  AT(0, Jo),

where J0 is J  evaluated at the  true  param eter. It is a positive semi-definite matrix. 

The Hessian is defined as

A =  f  ^ U , + l(-,3)'WT( - J ) - l fpUw (-,l3)dP(-\p)
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and its empirical estimate as

A* = f E  ^ w ( - J r ^ T( - J r l ^ t t +, ( - j ) .

Assume tha t A t (/3) — > A uniformly in a  neighborhood of p0 and A is continuous 

at PQ. Let Aq be the Hessian evaluated at the true parameter; we arrive at the 

asym ptotic normality resu lt13

y / T 0  - P o )  A  iV (0,A o^oA o1). (3.20)

To make inference about the param eter value, the asym ptotic variance should be 

estim ated by the usual sandwich formula

Avar(/?) =  i / l f V r / l r 1, (3.21)

which is a W hite’s heteroskedasticity robust estim ator. Because of Condition 2, no 

serial correlation need to be accounted for.

Conditional M om ent Test

A conditional moment type test (Newey 19S5, Tauchen 19S5) can be constructed

from the errors of the fitted moments. It only requires the estim ation of the restricted

model. Here we first introduce the asymptotic distribution of the test statistics when 

true param eter is known, then discuss the correction of asym ptotic variance when 

using the estim ated param eter value.

The error vector of the first two moments is

r t+1 -  £ t (rm )
r?+1- £ ( r ? + l) J ’

13The maximum-likelihood estimator of uniform distribution parameters is not asymptotically nor­
mal, because the convergence comes from only one side (above or below). This is not a problem 
in our method-of-moments estimator, since the sample estimates are scattered evenly around the 
population truth. The statistical inference based on the Wald standard error is valid.
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which has a  distribution with E t(Vi+1) =  [0,0]' and f2t+l =  Var*(VJ+i)- By construc­

tion, is symmetric and positive definite. W ith the first four conditional moments 

at hand, we can construct fh+i as

*+i
£ (r?+ i)  E tt f +l) 
Ett f +l) Et(r}+1)

E t(rt+i)Et(rt+l) Et(rt+i ) £ f(r?+1) 
£ t(r?+ l) £ f(r f+l) £7«(r?+ l)E f(r?+ l)

Applying a suitable version of central lim it theorem, one has

T - 1

IZ  Normal

10 
1_

1

0
1

1 --
-- 0 1

1 0 1
(3.22)

or equivalently,

r - i D.
f  £  ^ + in r+.V«.. Chi-Square(2). (3.23)

(=1

The regularity condition for the central lim it theorem is very mild, since the error 

vector is not serially dependent and since the conditional heteroskedasticity, as a 

function of stationary r t, is well-bounded. The la tter chi-square test provides a 

convenient diagnostics for the jump-diffusion modeling.

As pointed out by Newey (19S5) and Tauchen (1985), the asymptotic variance of 

the test statistic  (3.23) is not correct if the  estim ated param eter value is used instead 

of the population tru th . The adjusted asym ptotic variance can be shown as

v  _
^2 ~  Jvs(Jss) 1JSV,

where I 2 is a 2 x 2 identity m atrix, i.e., the asym ptotic variance in (3.23) with true 

param eter. Jss  =  £[-s*+i'st+i] =  J-> V S  =  and S V  =  VS '  are

simply the variance-covariance matrices of the moment condition vector

'  0 '

.  a& Vt+i. 0
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Then the correct asymptotic distribution of the test statistic  (3.23) is given by 

I
T1 *=i

It is clear tha t the adjusted asym ptotic variance £  is smaller than the unadjusted one 

lo; hence only the upper bound of the test statistic  (3.23) is following a Chi-square 

(2) distribution. Therefore rejecting a model by test (3.23) guarantees a rejection by 

test (3.24), but accepting a  model by test (3.23) invites more type II error than test 

(3.24).

We will implement test (3.23) to sift out the rejected specification. Instead of 

calculating a complicated variance-covariance m atrix  of test (3.24), we complement 

our inference with a robust Lagrange m ultiplier test.

Lagrange M ultiplier Test

The Lagrange Multiplier or Rao’s Score test is a favorable choice for model spec­

ification testing, since it only requires the estim ation under the null and since it 

is robust to heteroskedasticity. Under the  identification condition (1) and the no- 

serial-correlation condition (2), the lim iting distribution of scores are asymptotically 

normal; hence

LMt =  i  E  ii+1 A '̂1 £  s w  X'-(l) ,  (3.2.5)
1 r=i t=i

where I is the number of parameters in the  unrestricted model under the alternative 

minus the one in the restricted model under the null. A t  is the empirical estim ate of 

the Hessian, and s t+i is the empirical estim ate of the score. Although under correct 

specification, the Hessian can be replaced by the outer product of gradient, it requires 

additionally the correct specification of conditional variance and may have poor finite 

sample properties (Wooldridge 1994). T he validity of the LM test primarily resides
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in the fact tha t non-serially-correlated errors lead to non-serially-correlated scores 

(Wooldridge 1994).

The Lagrange M ultiplier test is equivalent to the GMM objective function test or 

the ./-test, however, it can not fully substitu te  the conditional moment test discussed 

earlier. Since one can arbitrarily  specify the dimension of the unrestricted model, the 

score tests on the same candidate models may yield different results. On the other 

hand, the conditional moment test does not rely on the dimension of the unrestricted 

model, hence the test result is robust to the choice of the alternative specification.

3.4 Empirical Application

Four jump-diffusion term  structure models are implemented in this section. We 

first estim ate the short-rate process using the MWNLS-JD estim ator constructed in 

Section 3.3 and then perform the classical specification tests. Next we estim ate the 

market prices of diffusion and jum p risks by minimizing the pricing errors between an 

average, observed yield curve and a model-implied one. Finally we use the estim ated 

parameters to calculate term  structure and to study some comparative statics.

3.4.1 D ata Description

The weekly three-m onth Treasury Bill rate is used to approximate the instantaneous 

short rate, because it is most widely traded on the secondary market and has new 

issue every week. The d a ta  set, which has a  sample mean of 5.66%, and a  sample 

standard deviation of 2.93%, is summarized in Table 3.1. The positive skewness 

indicates that there are more values below sample average than above, while the 

large kurtosis indicates heavy tails at both ends of the distribution. Looking at the 

first difference, it is well-centered but has extrem ely heavy tails. These are the typical 

features of financial tim e series data. We conjecture tha t any smooth sample path
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distribution may not fit the extraordinary skewness and kurtosis. Either discrete 

change in regimes or large unexpected jum ps must be introduced to cope with the 

seemingly non-stationary characteristics.

The tim e series level and first difference are plotted in Figure 3.1. It is clear that 

the short rate shows both smooth continuous movements and discrete large changes. 

Also, when the short rate jum ps, the m ean reversion and volatility persistence are 

intensified. This is one of the benefits of explicit jump-diffusion modeling. Incorpo­

rating the third and fourth moments enable us to capture the impact of large outliers. 

High volatility clustering may come from either the frequent but small zig-zags or 

the rare but large swings. Therefore conditional mean and variance alone are not 

sufficient to distinguish between a  distribution with wide shoulders and one with fat 

tails. Shorter m aturity yields like the seven-day EURO dollar rates or the overnight 

Federal Fund rates are more close to the short rate than the three month t-bill; but 

these yields have many liquidity shocks and too much institutional noise. Increas­

ing the sampling frequency to daily may invite more microstructure distortion and 

day-of-week effect. Considering the weekly issuance structure and the deep market 

liquidity, weekly three month t-bill rate from the secondary market may be the best 

choice to represent the short-term  interest rate.

3.4.2 Estim ation o f Jump-Diffusion Processes

The estim ation results are summarized in Table 3.2. They include diffusion param eter 

estim ates, jum p parameter estim ates, a conditional moment test, and a Lagrange 

m ultiplier test. The estimates of long-ran mean param eter 0 are very similar across 

the four models, ranging from 4.03% to 4.86%. In jump-diffusion model, the “total 

long run mean” should include both  the contribution from the diffusion (0) and 

the contribution from the jum ps (p ( ')E j [J(-)]/k ) (see the example in Section 3.3.1).
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Since the sample mean is 5.66%, the pure diffusion (model 1) and dependent jum p- 

size (model 4) underfit, but the independent jum p (model 2) and the dependent 

jum p-rate  (model 3) are getting closer. The Student-f tests of individual parameters 

are mostly significant. The m ean reversion param eter estim ation is also very close, 

within the range from 0.0045 to 0.0052. It corresponds to a  extremely persistent 

yet stationary component of the spot-rate process. The local variance parameter 

estim ate is varying across the four models and is rejected by the dependent jump-size 

(model 4).

For model 2 (independent jum p), the jum p-rate and jump-size estimates seem 

reasonable. The jum p am plitude follows a uniform distribution with a  lower bound 

of -2.87% and an upper bound of 3.52%. The expected jump-size is about 30 basis 

points if one jum p occurs. The jum p-rate  is 0.0120, i.e., roughly one jum p in less 

than two years. The expected jum p impact at any instant is only about 0.4 basis 

point. The jum p term is statistically very significant.

For model 3 (state-dependent jum p-rate), the interpretation of jum p-rate and 

jum p-size is slightly different. The jum p lower bound param eter seems reasonable at 

-3.92%, while the upper bound of 11.92% seems too high. The instantaneous jum p 

probability now becomes state  dependent 0.0036 — 0.0266^, featuring high interest- 

rate, low jum p probability. The m ean jump-size averaged by the jum p probability, 

has an expected jum p im pact between 0 and 2 basis points. When the short-rate 

level is higher, the jum p probability is lower, and the expected jum p impact would 

be even smaller. All the jum p param eters axe very significant.

For model 4 (state-dependent jump-size), the jump-size is driven into unrealisti- 

cally negative region —0.2001 — r t , while the jum p-rate is forced to be roughly one 

jum p every 200 years. However the  instantaneous expected jum p impact is about 

-0.02 basis points. The near zero jum p-rate  with a large standard error indicates tha t
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state-dependent jum p-size specification may be rejected. In fact, the square-root pa­

ram eter estim ation in Model 4 is very close to tha t in Model 1 which has no jum ps 

a t all.

Turning to the overall specification, the conditional moment test (3.23) introduced 

in Section 3.2.3 strongly rejects the square-root diffusion process with p-value 0.0002. 

All the jump-diffusion models easily pass this test, with p-value ranging from 0.1031 

to 0.4391. Since the unadjusted conditional moment test (3.23) may underreject the 

false alternatives, we need to investigate this possibility with the more robust LM 

test (3.25). The results in Table 3.2 suggest tha t all the candidate models are not 

rejected, however, the p-value of the square-root model is only 15%, while the p- 

values for the jump-diffusion models are about S2-99%. Recall tha t the LM test is 

sensitive to the dimension of the  unrestricted VAR specification (3.16).

The param eter estim ation and specification test suggest tha t the jum p augmen­

tation is statistically significant. Square-root model 1 is rejected. Both independent 

jum p-rate  model 2 and state-dependent jum p-rate model 3 have reasonable param eter 

estim ates. State-dependent jum p-size model 4, although it passes the specification 

tests, has an insignificant jum p term.

3.4.3 Estim ating the Risk Premium s

The market prices of diffusion and jum p risks must be obtained to complete the term  

structure calculation. Following ATt-Sahalia (1996a), we adopt a  nonlinear least- 

square approach to minimize the  pricing errors between a target yield curve and the 

model-implied yield curve. The target yield curve in Figure 3.2 is based on the tim e 

averages of discount bond yields from June 30, 1964 to December 29, 1995. The data  

set is obtained from the Center for Research in Security Prices (CRSP). There is a 

to tal of 379 m onthly observations, with nine m aturities (months 1, 3, 6, and 9 and
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years 1, 2, 3, 4, and 5). These discount bond yields were first constructed by Fama 

(19S4) and Fama and Bliss (19S7), and then subsequently updated by CRSP. The 

short m aturity  yields are based on the average of bid and ask prices of Treasury bills 

and are normalized to reflect a  standard  m onth of 30.4 days. The long m aturity yields 

are computed by interpolation, assuming the same forward rates between successive- 

m aturity  treasury bonds.

We take the time average as the target yield curve and use the model-implied 

yield curve to estim ate the market prices of risks. Since there are nine maturities, we 

use the shortest m aturity (1 month) to invert from the yield to the short rate. The 

objective function to be minimized is simply

,miP -  y {t )]2,Mv,*j o t _ 2

where Y(j3; r ;  Au', Ay) is the model-implied yield and Y ( t ) is the observed average 

yield. If the equilibrium price is observed w ithout noise, the pricing error should equal 

zero. W ithout an economic theory for the measurement error, the most reasonable 

assumption is that the error is ju st white noise. The estim ation results are shown in 

Table 3.3, together with the robust standard  error and the minimized pricing errors.

For the square-root model 1, the m arket price of diffusion risk is negative 

with a reasonable magnitude, and is statistically significant. However, the fitted- 

yield curve shown in Figure 3.2 is very flat and slightly convex, not conforming to 

the historical average. On the other hand, all the jump-diffusion models achieve 

dram atic decreases in the minimized pricing error (see Table 3.3), and the implied 

yield curves are much more flexible in tracking down the observed yield curve (Figure 

3.2). In the short end of the term  structure, the state-dependent jump-size model 4 

fits better. In the long end, the state-independent jum p-rate model 2 seems closer. 

On average, the state-dependent jum p-rate  model 3 stands out as the best match.
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It is also revealing to look at the parameter estimates of risk premiums. The 

market price of diffusion risk for model 2 (independent jum p) is -0.0012, which is 

much smaller than the square-root model in absolute magnitude. The slack is picked 

up by the jum p-risk param eter -545.51S3, which is seemingly too large. Considering 

that the correct measure of jum p-risk premium is p(Xj  — l ) E j ( J ), the expected 

jum p-risk prem ium  (-0.0213) is still in the normal range. The state-dependent jum p- 

rate model 3 is the best fit. The positive diffusion risk price (0.0030) is somewhat 

counter-intuitive. The jum p-risk price is -111.2223. The total jum p-risk premium 

is now time-varying (pQ -f p ir t)(Xj — l ) Ej ( J ) ,  ranging from -0.0029 to -0.0136. The 

total risk premium of bond return is still within the reasonable range, 23 to 82 basis 

points. For the state-dependent jump-size model 4, the diffusion and jump-risk prices 

both have the wrong signs, and the bond return premium becomes negative. Even 

though the yield-curve fitting is not bad (Figure 3.2). its economic interpretation is 

hard to gauge. Overall, the state-dependent jum p-rate model achieves the smallest 

pricing error.

3.4.4 Econom ic Comparative Statics

Relationships between bond prices or yields with respect to param eters changes are 

also of interest to financial economists. However, global analysis of comparative 

statics are usually quite involved, especially for the jump-diffusion processes. Even 

in the simple square-root model, some relationships have been disputed for decades 

(Sun 1992). Here we restrict to local comparative statics of the estim ated parameters 

and numerically plot the yield curves.

It is common knowledge tha t the yields of all m aturities rise as the current interest 

rate increases, w ith the short end of the term structure being more volatile (Cox et al. 

1985a). However, the shape of the yield curve as a  function of tim e-to-m aturity cam
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be anything from concave increasing to convex decreasing, from flat-shaped to hump­

shaped (Figure 3.2). Our study of comparative statics will focus on the structural 

parameters around their estim ated values.

Figure 3.3 investigates the standard square-root model 1. The yield curve turns 

out to be a linear function of the long-run mean param eter 0, and the scale of the 

y-axis suggests tha t the yield changes are very small. In contrast, the yield change 

with regard to the mean reversion param eter k is significantly convex and increasing. 

The local variance param eter a  dram atically pulls down the yield curve initially and 

then makes it almost flat. The diffusion risk price Ajy shows the most interesting 

shape: first concave and increasing below zero, then concave and decreasing above 

zero. These stylized facts of the square-root yield curve are quite standard.

Comparative studies of the jump-diffusion yield curves (models 2, 3, and 4) are 

reported in Figures 3.4, 3.5, and 3.6. The characteristics of the diffusion part param­

eters are very similar. The yield curves on long-run mean 0 are all linearly increasing 

and very flat, ju st like that of the square-root process (model 1). For the mean re­

version k, yield curves are all linearly decreasing, exactly opposite to the square-root 

process. This is possibly caused by the positive expected jump-size, which captures 

most of the upward mean-reversion and leaves the downward mean-reversion to the 

diffusion part. All the yield curves on local variance a  are decreasing and concave, 

which is the same as in the square-root model. Lastly, the market price of diffusion 

risk Apy drives all the jump-diffusion yield curves downward, with the independent 

jum p model being more linear, the state-dependent jum p-rate model more concave, 

and the state-dependent jump-size model most concave. In contrast, the square-root 

counterpart is almost quadratic.

Since the jum p-term  specifications are different across the three models, detailed 

comparisons are given here. The yield curves on lower-bound a and upper-bound
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6 are linearly increasing in model 2 (independent jum p), while they are concave 

increasing in model 3 (state-dependent jum p-rate). From the pricing functions one 

can see th a t the expect jum p im pact not only feeds into the intercept (model 2), 

but also into the slope (model 3) (Recall tha t yield curve is a linear function of 

the short rate). The constant jum p-rate  p in model 2 drags down the bond return, 

similar to the linear jum p-rate  function in model 3. This is no surprise, since the 

mean jump-size has a positive impact on the yield level, and the jum p-rate as a 

measure of risk has a negative im pact on yield level. In other words, jump-size plays 

mostly the role of drift, and jum p-rate  plays mostly the role of local variance. The 

impact from the jum p risk premium param eter A j  is linearly increasing in models 

2 and 3. This is consistent with the pure square-root model when the Aw is less 

than zero. The comparative statics of the jum p term in model 4 is counter-intuitive. 

The im pact of the intercept in the state-dependent jump-size is negative, in contrast 

to the usual positive sign of the expected jump-size. The jum p-rate has an almost 

flat im pact at first, then dram atically oscillates into positive and negative regions, 

without any sensible explanation. One should be reminded that the state-dependent 

jump-size model 4 is not an equilibrium compatible specification, and its pricing 

solution can only be approxim ated (see Section 3.2.3). The impact from the jum p 

risk premium param eter is similar to those in models 2 and 3. In short, both the 

empirical estim ation and the comparative statics suggest tha t the state-dependent 

jump-size model is not a good candidate for modeling the short interest rate.

Overall, the yield-curve comparative statics have economically meaningful signs 

and magnitudes and tend to be more sensitive to both the factor risk parameters 

(er and p) and the risk aversion param eters (Aw and A j ) .  The specifications of 

independent jump-diffusion and state-dependent jum p-rate models stand out with 

convincing economic interpretations.
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3.5 Conclusion

In this paper we have proposed a  class of jump-diffusion models of equilibrium in­

terest rate. Our contribution is to design an efficient estim ation strategy with valid 

specification tests. We can provide analytical solutions for both the conditional mo­

ments of short-rate dynamics and the entire term structure of different maturities. 

The param eter estim ation and statistical inference suggest that jum p impact is very 

significant. A better capturing of the short-rate volatility can reduce the pricing error 

of the entire yield curve. Numerical analysis of comparative statics is also consistent 

with the economic intuitions. In general, the jump-diffusion term  structure is very 

sensitive to the factor risks and the attitudes toward risk. The state-dependent jum p- 

rate model and the independent jum p-rate  model are favored by both the econometric 

diagnostics and the economic analysis.

The challenge of fitting the short-term  interest rate is to accommodate the rich 

volatility feature. Jump-diffusion modeling is one of numerous efforts that are work­

ing in this direction. An im portant lesson from this study is tha t, in order to estim ate 

the volatility more accurately and more efficiently, one must incorporate the third 

and fourth moments in addition to conducting an extensive specification search of 

the first and second moments. This necessity is due to the fact tha t the fat-tail char­

acteristics of interest rate data  can not be well explained by a smooth sample path 

distribution with stationarity restrictions.

3.6 Tables and Figures
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T ab le  3.1: Summ ary Statistics of Three Month T-Bill Rate 
The weekly three m onth T-bill yield data  is obtained from the Federal Reserve Bank 
of St. Louis. The tim e series ranges from January S. 1954 to June 5, 1998, with total 
observations of 2318. The skewness and kurtosis are 0 and 3 for a standard normal 
distribution.

M aturity Annualized Yield First Difference
Moments
Mean 0.0566 0.0000
Std Deviation 0.0293 0.0022
Skewness 1.1138 -0.6146
Kurtosis 4.6S70 23.1248
Quantiles
Minimum 0.0059 -0.0189
05 percent 0.0198 -0.0027
25 percent 0.0353 -0.0006
50 medium 0.0522 0.0000
75 percent 0.0726 0.0007
95 percent 0.1143 0.0027
Maximum 0.1736 0.0203
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Table 3.2: Param eter Estim ates and Specification Tests 
The details of models 1-4 are discussed in section 3.2.2; the MWNLS-JD estim ator 
is introduced in section 3.3.1 and 2.3.2; and the two specification tests are laid out 
in section 3.3.2. W hite’s robust standard  errors are reported in the parentheses for 
all param eter estimates.

Param eter Model 1 Model 2 Model 3 Model 4
Diffusion
Long-Run Mean 6 0.0477 0.044S 0.0403 0.0486

(0.0014) (0.0013) (0.0006) (0.0002)
Mean Reversion k 0.0049 0.0052 0.0043 0.0050

(0.0001) (0.0001) (0.0001) (0.0001)
Diffusion cr 0.0061 7.8e-6 0.002S 0.0046

(0.0014) (0.0029) (0.0009) (0.0012)
Jump-Size
Independent a -0.02S7 -0.0392

(0.0011) (0.0007)
Independent b 0.0352 0.1193

(0.0010) (0.0006)
Dependent Jq -0.2001

(0.0630)
Jum p-Rate
Independent p 0.0120 1.3e-5

(0.0011) (1.2e-5)
Dependent po 0.0036

(0.0002)
Dependent p\ -0.0266

(0.0010)
Conditional Moment Test
Chi-Square(2) 17.5726 1.6461 4.5435 2.9851
p-value 0.0002 0.4391 0.1031 0.2248
Lagrange M ultiplier Test
Chi-Square 15.3962 0.5394 3.6657 2.2924
Degree of Freedom (11) (8) (7) (9)
p-value 0.1651 0.9998 0.S174 0.9S60
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Table 3.3: Market Prices of Risks 
The pricing error is the standard deviation of the minimized residue between the 
average observed yield curve and the model-implied yield curve. W hite’s robust 
standard errors are given in parentheses. The pricing functions for models 1, 2, 3, 
and 4 are discussed in section 3.2.2.

Diffusion Risk Aw  Jum p Risk Xj  — 1 Pricing Error
Model 1 -0.0870 (0.0069) 0.0102
Model 2 -0.0012 (0.0001) -545.5183 (60.6029) 0.0015
Model 3 0.0030 (0.0003) -140.5368 (16.3018) 0.0009
Model 4 6.2829 (0.2709) 131910 (5418) 0.0011
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F ig u re  3.1: Tim e Series Plot of Weekly Three Month T-Bill Rate,
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F ig u re  3.5: Comparative Statics for Model 3 with r t =  5.66% and YTM =  5 Year.
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F ig u re  3.6: Comparative Statics for Model 4 with r t =  5.66% and YTM =  5 Year.
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Chapter 4 

Term Structure o f Interest Rate with  
Regim e Shifts

l In this chapter I explore the possibility tha t changes in the conduct of interest rate 

policy have im portant effects on the term  structure of interest rates. To capture this 

idea, we develop an equilibrium term  structure model with the underlying short term  

interest rate and the m arket price of risk are determ ined by latent regime-switching 

square-root processes. I will combine the regime-switching methodology proposed 

by Hamilton (1989, 1990, 1996) with the recent literature of affine term  structure 

models as in Duffie and Singleton (1997) and Dai and Singleton (2000), and provide 

analytical solutions for bond prices of different m aturity. Exploiting the analytical 

solutions, one can estim ate the model via the Efficient Method of Moments (EMM), 

using short and long interest rate  data  from 1964-1995. The empirical results show 

that a regime shifts two-factor square-root model, finds considerable support in the 

data. Standard term  s tructure models (with up to three factors), which do not allow 

for regime shifts, are sharply rejected in the data. The diagnostics show that only 

the preferred regime switching model can reasonably mimic the observed conditional 

volatility and correlation of yields. In addition, the estim ated regime-switching model 

produces the smallest absolute pricing error in fitting the yield curve. I find tha t the 

extracted regimes are intim ately related to business cycles, and the key observable 

difference across regimes is in the yield spread.

*Part o f the material of this chapter is in Bansal and Zhou (1999).
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4.1 Introduction

Many recent papers find tha t the univariate short interest rate process can be reason­

ably well modeled as a regime switching process (see Hamilton (198S, 1996), Gray

(1996), Garcia and Perron (1996), and Ang and Bekaert (199S)). In addition to 

this statistical evidence, there are economic reasons as well to believe tha t regime 

shifts are an im portant aspect of the interest rate data. The conduct of m onetary 

policy, which has first order effects on interest rates, is subject to discrete changes 

in policy regimes. The discrete changes in policy regimes, for example, may reflect 

the differences in conduct of policy during recessions and expansions. Such shifts in 

regimes, on economic grounds, have significant impact on not only the behavior of 

the short interest rate, but on the entire term  structure of interest rates. Standard 

term  structure models, such as the Cox et al. (1985a) (CIR) model, do not perm it 

the possibility of discrete changes in regimes despite the potential for sizable effects 

from such regime shifts. In the context of the U.S. treasury yield curve, the poor 

empirical performance of the various versions on the CIR model, as documented in 

Brown and Dybvig (1986), Gibbons and Ramaswamy (1993), Chen and Scott (1993), 

and Pearson and Sun (1994), may well be due to the fact that they do not perm it 

the possibility of discrete regime shifts.2

In this essay we take seriously the idea tha t changes in regimes have sizable effects

on the term  structure and incorporating them  can better account for the observed

behavior of the term structure of interest rates. Motivated by this possibility we

develop a discrete tim e model of the term  structure that incorporates persistent

regime shifts. As in the CIR model, one cam provide an analytical solution for the

2In particular, evidence provided by Brown and Dybvig (1986), shows that the parameters of the 
model change considerably across time; a feature which is consistent with the premise o f regime 
shifts. In the context of swap yields Duffie and Singleton (1997) and Dai and Singleton (2000) 
estim ate affine term structure models. Ait-Sahalia (1996b), Andersen and Lund (1997), estimate 
different short interest rate models.
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entire term  structure of interest rates in th e  presence of discrete and persistent regime 

shifts and time-varying risk premium. The time-varying risk premium is an im portant 

aspect of the specification given the overwhelming violations of the expectations 

hypothesis in term  structure data, as docum ented in Campbell and Shiller (1991). It 

is useful to note tha t many of the above mentioned papers, model the univariate short 

rate process as a regime switching process, however they do not derive or explore the 

implications of regime shifts for the joint conditional distribution of multiple yields 

(i.e., the term  structure), which is an im portant focus of this paper.

To provide a consistent method to estim ate various models under consideration 

one can rely on a simulation based estim ator for the model. In particular I use the 

Efficient M ethod of Moments, developed in Gallant and Tauchen (1996b), and Bansal 

et al. (1995) to estim ate all the models under consideration. Tests of over-identifying 

restrictions based on the EMM method provide a way to compare different, poten­

tially non-nested models. This estim ation technique forces the model to confront 

several im portant aspects of the data, such as the conditional volatility and cor­

relation across different yields. This perm its one to analyze whether a given term  

structure model can account for these im portant time-series and cross-sectional as­

pects of the data. To provide diagnostics which perm it sharp discrimination across 

models I rely on the reprojection methods developed by Gallant and Tauchen (1998b). 

The reprojected conditional density, is the density for yields conditional on their lags 

for a given term  structure model. Using this conditional density, one can evaluate 

if different model specifications imply conditional volatility and cross-correlations of 

yields comparable to those found in the data.

Exploiting the derived analytical solution, I estim ate the regime shifts model 

using m onthly term  structure data on U.S. treasury bills and bonds for the period 

from 1964-1995. In addition, I also estim ate several versions of a benchmark CIR
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model. In virtually all empirical dimensions, our model, which incorporates discrete 

regime shifts, does better than the multi-factor versions of the CIR model. Indeed 

the evidence shows tha t only the regime shift model can account for the observed 

conditional volatility and cross-correlation of yields. Formal statistical tests cannot 

reject our model which incorporates regime shifts, while various specifications of the 

CIR are sharply rejected in the data.

In term s of more specific empirical results, I find that the one, two, and three factor 

CIR models are sharply rejected with p-values of zero. While the three factor model 

provides some improvement over the two factor model, the diagnostics show that 

this model cannot justify the observed conditional volatility a.nd conditional cross- 

correlations across yields. The only model specification tha t finds support in the 

d ata  is the two-factor regime switching model. Tests of overidentifying restrictions 

do not reject this model (with p-value of 14%). Further, the implications of this 

model for conditional volatility and correlation across the short and long interest 

rates are surprisingly close to those found in the data. Given a set of estim ated 

param eters I also explore the ability of a given specification to capture all observed 

yields in the cross-section, at each date. I show that the two factor regime switching 

model produces the smallest cross-sectional pricing errors across all the specifications 

considered in the paper. The empirical evidence suggests tha t regimes differ prim arily 

in term s of the volatility of the short interest rates, and in the slope of the yield curve. 

Further, regime indicators are intim ately related to the phases of the business cycle— 

regime with low yield spreads seems to occur prior to business contractions.

The remaining of this paper is organized in the following manner. Section 4.2 

presents the benchmark and the regime shifts term  structure model. Section 4.3 

discusses the EMM estim ation strategy and Section 4.4 presents the non-parametric 

density for yields used to estim ate the various term -structure models. Section 4.5
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discusses the empirical evidence related to different models and presents an array of 

diagnostics. Section 4.6 provides cross-sectional implications on pricing errors and 

regime classification from the observed yield data  and Section 4.7 presents concluding 

comments.

4.2 Term Structure M odels of Interest Rates

In this section, I first derive the term  structure implications for the specification 

considered in Sun (1992), Backus and Zin (1994), and Campbell, Lo, and MacKinlay

(1997). The solution methods used for this benchmark case are then extended to 

derive results in the case where the state  variables follow a regime switching process3. 

The derivation’s focus is on a single factor (i.e., state  variable) as the extensions to 

the multi-factor case follow immediately from the single factor case.

4.2.1 Benchmark Model: The CIR m odel

The key building block of this benchmark case is the state variable x which follows 

the following square-root process.

x t+i — x t = k (9 — x t ) + <T\/xtUt+i. (4.1)

where ui+i ~  iV(0,1) is a white noise, « is the mean reversion parameter, 0 is

the long-run mean param eter, and er is the local variance parameter. This is the

discrete tim e counterpart to the CIR model, discussed in considerable detail in Sun

(1992) and Campbell et al. (1997). Sun (1992) also shows tha t this discrete tim e

specification converges to the continuous-time specification when the interval across

3In a similar general equilibrium setting, Evans (1998) investigates the impact of regime-switching 
on the nominal and real interest rates. An earlier work by Naik and Lee (1997) solves the term  
structure model with regime shifts in continuous time and provides empirical evidence that a one 
factor regime-switching model can out-perform a two factor Affine model.
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adjacent tim e periods shrinks. Based on 4.1, it follows tha t £ t[x*+i] =  x t + k (6 — x t), 

and V ar t( x t+i) =  a 2x t.

I also assume th a t the pricing kernel (the inter-tem poral marginal rate of sub­

stitution in equilibrium ) is M t+i =  exp{—r j<t — (acr)2^- — aerv/x7u(+l}, where a  

affects compensation for aggregate risk. For deriving many of the formulas it is also 

convenient to  re-write the pricing kernel in term s of A =  a a 2—compensation for sys­

tem atic risk is proportional to this param eter. Consequently, the pricing kernel can, 

equivalently be w ritten as

M t+i =  e x p { - r /i( -  -  ^ y / T tu t+l} (4.2)
IT  1  <J

Note th a t Et[M (+1] =  exp(—r / it), where r /<t is the continuous one period risk-free 

rate— this implies the usual restriction th a t the conditional mean of the pricing kernel 

must equal the price of the one period default-free discount bond. Further, the 

asset pricing restrictions on bond returns imply th a t, E t[Mt+ihnit+i} =  1; where 

^n.t+i =  *s one Per'0<̂  Sross return on a pure discount bond with n

periods to  m aturity  at date t. The price of this bond a t t is P(t,n).

To solve for the discount bond prices a t date t which m ature at t +  n. I conjecture 

tha t the bond price, P ( t . n ), is a function of the sta te  variable x t and the time to 

m aturity  n,

P(t.  n ) =  exp{—A(n) — B ( n ) x t}.

No-arbitrage conditions imply that instantaneous value of a dollar should be one, 

hence for n =  0, A(0) =  B ( 0) =  0. In addition, I also conjecture tha t A (l) =  0 and 

B( 1) =  1, th a t is r/'t =  x t. Based on this conjecture, and the assumed process for a:, 

the continuous bond return  ln[P(^~̂ ’”j~^], is conditionally normally distributed with 

mean

Hn,t =  —A(n — 1) — B(n  — l ) £ t[xt+i] +  A(n)  +  B ( n )x t
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and variance

<j2n t =  B(n  -  l ) 2V’a r t(x£+i).

Exploiting the asset pricing condition, £ £[M£+i/i„i£+i] =  1, the joint lognormality of 

Mt+i and /tn,t+i5 and our conjectured solution. I derive

2

e x p { - r /it +  (j.Un +  +  B(n  -  l)Aar,} =  I (4.3)

The third term  in this expression, is the Jensen’s adjustm ent for continuous 

returns and the last term , B(n  — l)Axt is the risk-premium associated with the bond 

return. Using the restriction r / t£ =  x t, the definitions for fxt,n, and cr£n, and taking 

logs of 4.3 it follows th a t

2

—x t — A(n  — 1) — B(n  — lJE jx t+ i] -f A{n)  +  B (n )x t H— ^  +  B{n — l)A z( =  0 (4.4)

It is useful to recognize tha t 4.4 can also be derived by using exp(y) — 1 =  *7 ~

y. I use this relation la tte r in the paper. While this is an approximate result in

discrete time, it is exact in continuous time—over small intervals of time, each term  

in 4.3 is scaled by the length of the tim e interval A t , consequently higher order term  

in the approximation (i.e. terms y h. k  > 1) have negligible effects on the solution. For 

greater details regarding this approxim ation see Sun (1992), Merton (1990), Backus 

and Zin (1994), and Ingersoll (19S7). Equation 4.4 says tha t expected excess returns, 

in equilibrium, must equal the compensation for systematic risk.

Using 4.4 it follows th a t A(n)  and B(n)  satisfy,

B(n) =  (1 -  A -  k )B ( ti -  1) -  \<?2B 2{n -  1) +  1,

A{n)  =  A(n  — 1) +  k6 B ( ti — 1) (4.5)

with boundary conditions A(0) =  B ( 0) =  0. The solution for A ( n ) and B(n),  implied 

by 4.5, satisfies the asset pricing conditions 4.4 and is consistent with our conjectured
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solution. This solution is comparable to the continuous tim e CIR model. Note tha t 

the yield-to-m aturity of a discount bond in discrete tim e is defined as

In P ( t ,n )  _  A ( n ) ^  B ( n )x t
(4.6)

n n ' n

Extending this analysis to multiple independent square root factors is straight for­

ward, and is discussed briefly below.

4.2.2 Introducing Regim e-Switching

We are interested in deriving the implications for the term structure when the econ-

policy. To keep things tractable I will model the regime shifts process as a two state 

Markov process as in Hamilton (1989, 1990).

st =  0,1 is governed by the transitional probability m atrix of a Markov chain

where H J=o,i 'rt'j =  1 an(I 0 <  7rij <  l-4 In addition to the discrete regime shifts the 

economy, as in the benchmark case, the economy is also affected by a continuous 

state  variable,

where K,t+1, dSt+l, and <r3t+I, cure the regime-dependent mean reversion, long run 

mean, and volatility param eters respectively. All these param eters are subject to

4When, the transition probability is independent of the regime, that is when ~oo =  " 1 0  I get an 
non-persistent (an iid) regime switching process. Note this probability restriction implies that 
~oi =  1 — ttoo =  "Hi and fioo +  fi"ii =  1. Further fioo +  fin  — 1, as shown in Hamilton (1989), 
determines the persistence in the regime process, which in the iid case is zero.

omy is subject to regime shifts. As discussed earlier, the motivation for this is to 

try  and capture, in an analytically tractable manner, the potential effects of shifts is

Suppose tha t the evolution of tomorrow’s regime 5*+i = 0 ,1  given today’s regime

"oo "01 
TTlO 7i"ll

(4.7)

(4.8)
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discrete regime shifts. Specifically, x £+i — x t = kq(9q — x t) +  <70v/T7u£+i if ^^e regime 

s t+1 =  0, and :r£+1 — x t = Ki (8i — x t) +  cri if the regime S(+i =  1. Note that

the innovation in the process characterized in 4.S, n<+i, is conditionally normal given 

x t and s t+i. In general, there are two systematic risks, one is square-root factor risk 

and the other regime shifts risk.

For analytical tractability  I assume tha t the process for regime shifts s £+1 is inde­

pendent of x t+i-i , / =  0 • • • oo, this is similar to the assumptions made in Ham ilton’s 

regime switching models. It is also assumed th a t the agents in the economy observe 

the regimes, though the econometrician may possibly not observe the regimes.

The pricing kernel for this economy, is similar to tha t in the benchmark case, save 

for incorporating regime shifts

A/,+, =  e x p {-r / ,, -  ( ^ ± i ) 2§- -  ^ S r tuM ] (4.9)
crSt+l 4 <7S(+1

For much of the analysis it is useful to define two information sets; — {•?/: £/! —oo <

I < t} is the information known till tim e t , and JF“ =  Ti  U {5(+i} is an augmented

information. J-* additionally includes information regarding the regime, s (+1, but 

does not include I use the notation J-j t, to emphasize that s*+i =  j ,  j  =  0,1.

Using 4.9 it follows that =  exp(—r / tl)—the price of a one period

pure discount bond.5 The asset pricing conditions tha t pure discount bond returns 

must satisfy, as before is ElMt+ihnj+ilFt] =  1* W ith regime shifts, I conjecture that 

the bond price with n periods to m aturity, at date t  depends on the regime s t — i, 

°To see this, I exploit the law o f iterated expectations given that st =  i,

E [ E { M t+l \T?) \Ft} =  exp{ - r u ) £  ^ [ ex p { - ( ^ - ) 2^ - -  (4.10)
(j i £ U ij=o,i J 1

The expectation based on uses the additional information regarding the regime at s£+i, 
and the probability averaging integrates out the dependence on the future regime s£+1. The 
conditional mean, £[ exp{ —( — | i v/£7u£+i} |^ r“t] =  exp(0) for j  =  0 ,1  and the probabilities 
sum to one. Hence the result follows.
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i =  0,1, and xt

Pi(t,n) =  ex p {-.4 ,(n ) -  Bi{n)xt}.

The one period ahead bond price, analogously depends on s (+i and x £+i

Pst+l{t +  I n  -  1) =  e x p { -A S(+1(n -  1) -  B3t+l(n -  l)x <+l}.

In addition I impose the no-arbitrage condition 4,(0) =  £?,(0) =  0, and also conjec­

ture that .4,(1) =  0, B{( 1) =  1, for i =  0,1, tha t is, r / it =  x t.

The continuous one period ahead bond return, In(l +  /in,t+i) =  =

—.4a,+ I (n -  1) -  B 3t+l(n -  l )x £+1 +  4 ,(n ) +  Bi(n)x t . Given x t and s t+I =  j ,  the 

continuous bond return is normally distributed with mean

Vnj.t = - A j ( n  -  1) -  Bj(n  -  l ) £ [ x £+1|.F“£] +  4 ,(n ) +  Bi{n)x t , (4.11)

and conditional variance

=  Bj{n -  l ) 2a]x t. (4.12)

The asset pricing condition, using law of iterated expectations is

E [E ( M t+lhn,t+l\ J ^ ) \ ^ t] =  £  =  1 (4.13)
J= 0 ,1

For given x £ and s£+i, the process Mt+ihnit+i is conditionally log-normal, and ex­

ploiting this feature 4.13 implies

2

'“ijE[Mt+ihn't+i \ F j t] =  7rt‘j exp{ r/,t +  f*n,j,t 4— +  Bj(n  — l ) A jX £}  =  1 
.7=0,1 .7=0,1

(4.14)

Using the approximation exp(t/) — 1 «  y, and r / tt =  x£, 4.14 can be re-stated as

2

+  Bj(n  -  1)Aj X£] =  0 (4.15)
.7=0,1
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with i =  0,1. Note tha t 4.15 depends on the current state z, which affects n n,j,t and 

the probabilities used in 4.15. Consequently, for each s t =  i the analog for 4.15 must 

hold.

W ith discrete regime shifts, 4.15 is the asset pricing restriction on the risk pre­

mium. Here, the continuous bond returns, from the perspective of economic agents, 

are distributed as a conditional m ixture of normals. In the standard case, bond re­

turns are conditionally normal. The risk prem ium  restriction, 4.15, also shows that 

agents anticipate the effects of regime shifts and are compensated for it. For exam­

ple, if the probability of the high risk regime is greater when s t =  0, then agents will 

dem and a greater risk premium in regime s t =  0, relative to when they are in regime 

s t =  1. Further, if regimes are fairly persistent, then the effects of a regime switch 

on the risk premium and hence the term  structure will be infrequent, but potentially 

large when a regime switch does happen. This feature, in addition to implied distri­

bution for bond returns (and yields) distinguishes the regime switching model from 

the standard model discussed in the previous section.

Substituting the expression for and cr̂  j t (see 4.11 and 4.12) in 4.15, I can 

solve for the regime dependent coefficients of the bond price function;

Ba{n) 7i00 TTOI (1 — Kq

fli(n ) "lO 'i'll (1 — Ki (4.16)

and

A q( ti) "00 "01 •40(n — 1) +  KqQqB q ( tI — 1)
.  A t (n )  _ "10 ^ l l A i  ( n — 1) +  — 1)

(4.17)

with initial conditions Ao(0) =  Ai(0) =  i?o(0) =  5 i(0 ) =  0. As these coefficients 

depend on which regime the economy is in, so does the term  structure of bond prices. 

Note tha t bond price coefficients are m utually dependent on both the regimes— 

current bond prices anticipate the likelihood of regime shifts in the future. The
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effects of the transition probabilities, as suggested by the above solution, are likely 

to be more pronounced a t the short end of the term  structure. Hence, one would 

suspect tha t the effects of regime shifts on the term  structure are more evident at 

the short end of the term  structure.

4.2.3 Extension to  M ultifactor Term Structure

Extensions of the standard model and the model with regime shifts to multiple fac­

tors is quite simple. For the two-factor model without regime-switching, I assume 

tha t there are two independent square-root processes i u +i — x lt =  kl(#l — ik )  +  

<Ti V^I7«k+i and X2t+i — x 2 t =  ^ 2(^2 — x 2t) +  02\/iE2tu2t+i' The risk-free interest rate 

is the sum of two factor returns r{ = x u +  -t^-6 The pricing kernel is similar to the 

univariate case, except th a t the risk prem ium  is now the sum of two square-root com­

ponents. The bond price is log linear, P ( t , n ) =  exp{—.4(72) — B i (n )x lt — B 2(n)x2t}

and using arguments similar to those used in the single factor case, it follows that

Bi(n)  =  (1 — At -  Ki)Bi(n  -  1) -  -  1) +  1,

B2[n) =  (1 — A2 — «2) 5 2(n — 1) — — 1) +  1,

A(n) =  A{n  — 1) -f- KiQi B \ ( ti — X) k262B2(ti — 1),

with boundary conditions A(0) =  /?i(0) =  B 2(0) =  0. The same argument applies to

the case of three or larger independent square root processes.

In the case of regime-shifting, I assume tha t the regime shifts process independent

of the factor square-root processes, and th a t the same regime shifts process applies to

all square root factors. The bond prices are sta te  dependent and log linear, Po(t, n ) =

exp{—j40(n) — Bio(n)xu — B 2o{n)x2t}, i f  s t =  0 and Pi{t ,n) =  exp{—A ^ n ) -

^Subject to identification constraints, more flexible linear specification o f the short rate process 
has been proposed in the literature (Dai and Singleton 2000, Duffie and Kan 1996)
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Bn{n)x i t  — B2i(n)x2t} , i f  s t =  1. The pricing kernel, as discussed above depends on 

the risk free rate, and the multiple factors with different AS(+1 for each factor. The 

solutions are systems of vector differential equations, for factor k, is

Bko(n) ~00 "01
_ Bki(n) "10 ^11

(1 -  Kko -  ^ko)Bk0{n -  1) -  kaloBlQ{n -  1) +  1 
(1 -  Kkx -  Aki)Bki(n -  1) -  Bh (n  -  1) +  1

and

.4 0(n) floo TToi •4 0(n — 1) +  KioOioBiofn —
-4 i(n) "10 'I'll A i (n — 1) +  Kti0 n .#u( rc  —

with initial conditions -4o(0) =  Ai(0) =  BiO(0) =  # u (0 )  =  B2o(0) =  B2i(0) = 0. 

Note tha t the above solution restrictions apply to each factor k  =  1 ■■■ K.  where K  

is the number of independent factors. Finally, the yields in the various models is 

computed from the given solution to the bond price equation. Yields in a K  factor 

regime switching model are computed by using the relation,

\ InPa(f,n ) A s(n) ^  Bka(n)xkt
Ya{t,n)  = ----------------= ----------- h 2 ^ ---------------•

n n  n
(4.18)

It is worth noting that the yield curve restrictions, such as 4.18, can be derived 

from a representative agent based general equilibrium model of the type considered in 

Lucas (1978). In such an specification, the underlying aggregate consumption growth 

and inflation process would be subject to regime shifts.' Our empirical exercise, treats 

the consumption and inflation processes as latent factor processes.

4.3 Estim ation by Efficient M ethod of Moments

In estim ation the focus will be to evaluate if the different models can justify the 

observed behavior of two interest rates—the six month U.S. t-bill rate . and the five

'The implications for the yield curve from the general equilibrium exercise are the same as in 
4.18. To keep the discussion compact I have not included this exercise in the paper, however, it 
is available from the authors upon request.
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year U.S. t-bond rate. We explore the ability of up to a three factor benchmark model, 

and up to a two factor regime switching model to justify the observed conditional 

distribution of the two interest rates under consideration. To utilize a consistent 

approach for evaluation and estim ation across the different models I rely on simulation 

based EMM (efficient method of moments) estim ator, developed in Bansal et al. 

(1995), Gallant and Tauchen (1996b), Tauchen (1996), and Gallant and Tauchen 

(1998a).

The EMM estim ator consists of two steps. First, the true conditional density 

of observed interest rates is approxim ated by a seminonparametric (SNP) series ex­

pansion, with the model dimension carefully chosen by an appropriate information 

criterion. Second, the score functions of the SNP density are used as moments, to 

be minimized using the simulation ou tpu t from the structural economic model. In 

this sense the model is forced to m atch the conditional distribution of the observed 

6-month and 5-year yields. This is a GMM -type estim ator which in addition to pro­

viding comparable (across models) measures for specification tests, also permits a 

series of interesting diagnostics to understand the differences and shortcomings of 

the different models under consideration.

4.3.1 Projecting True D ensity  onto Auxiliary M odel

Let the invariant conditional density of the observed interest rate data generating 

process be the p-model. By assumption, direct maximum likelihood estimation of 

the p-model is not available. However, any smooth conditional density function can 

be approxim ated arbitrarily close by a Hermite polynomial expansion (see Gallant 

and Tauchen (1996b)). The empirical evidence and details regarding estimating a 

conditional density using this semi-nonparametric approach are discussed below.

Let y be the vector of interest rates under consideration, x  be the vector of lagged
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y. The auxiliary /-m odel has a  density function defined by a modified Hermite 

polynomial,

f {y \x ,6 )  = C{[P{z,x)]2<p(y \yx , E x)},

where V  is a. polynomial with degree K~ in *, which is a standardized transformation 

z  =  R~l (y — fJ-x) with =  RXR X- The square of V  makes the density positive and 

argum ent of the polynomial is £. The coefficients of the polynomial are allowed to 

be another polynomial of degree Kx in x.  The constant in polynomial of x is set to 

1 for identification. C  is a normalizing factor to make the density integrating to one 

and d>(-) is a normal density of y  with conditional mean y x and conditional variance 

Ex, where fix is estim ated by using a VAR, and Ex is estim ated by using an ARCH 

specification, which parameterizes Rx. Note tha t both y x and Rx depend only on 

lags of y, tha t is the vector x.

The length of the auxiliary model (i.e., the SNP density) param eter is determined 

by the number of lags in the VAR mean specification, L lags in the ARCH specifi­

cation L r , lags of x  used in constructing the coefficients of the polynomial Lv. The 

degree of the polynomial in * is AA, and the degree for x  is K x . The specific choice 

for these tuning parameters, and consequently the SNP conditional density is done 

by relying on the BIC information criterion.

Let be the observed data, and x’i- i  be the lagged observations. The sample

mean log likelihood function is defined by

£»(MytKU) = -X^log[/(j/tl^-b0)]-
n t=1

where 0 are the unknown param eters of this conditional density, which need to be 

estim ated. A quasi-maximum-likelihood estim ator is obtained by

6n =  a rg m a x £ n(0 ,{ y j"=1). (4.19)9
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The dimension of the auxiliary /-m odel, the length of 0. is selected by the Schwarz’s 

Bayesian Information Criterion (BIC)

B I C  = sn(0) + ^  log(n),

where .s„(0) =  — £„(0, {y«}"=1) is the negative maximized objective function. For 

greater details regarding SNP see Gallant and Tauchen (19S9), Gallant and Tauchen 

(1992), Gallant and Tauchen (1997), and Gallant, Hsieh, and Tauchen (1997).

4.3.2 M atching Auxiliary Scores with Minimum Chi-Square

From the first stage sem inonparam etric estimates one obtained the fitted scores as 

the moment conditions,

In the second stage, a SMM-type estim ator is implemented in the following way. Let 

{j/(}i=i t>e a l°nS simulation from a candidate value of p. the param eter vector of the 

maintained structural model. The auxiliary score functions can be re-evaluated at 

the simulated data,

rnN{ p J )  =

and the minimum chi-square estim ator is simply minimizing quadratic objective func­

tion,

pn =  arg m in{m iV(/9,0)'X~lrhN{p, 0)}, (4.20)
p

where the weighting m atrix  J -1 is estim ated by the mean-outer-product of SNP 

scores
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Under regularity conditions on the d a ta  generating process, the gradients of the 

moment condition and the information m atrix  are convergent. Let p° be the tru th  

of the structural param eter and 9° the isolated solution of the moment condition 

m(p°,9°) = 0, then it is straightforward th a t limn_*.co M n = M°  almost surely, where 

M[p,0)  =  (d /dp ' )m (p ,0 ) are the gradients of moment conditions. Mn =  M {pn,9n) 

and M° =  M(p°,9°)  are just the sam ple and population counterparts. Given the 

population information matrix

7 °  =  J  J  [ ^ o g f { y t\xt. u 0 ° ) ] [ ^ \o g  f { y t\x t - i ,90)],p(yt, x t. l \p°)dxl. ldy,

a standard argument leads to limn-ycc I n =  7° almost surely. Therefore we can derive 

the consistency and asym ptotic norm ality results

Jjrn pn =  p° almost surely

-2+ N (o,[(M°)V°r\M°Tl)

The asym ptotic variance can be estim ated by its empirical counterpart,

VAR(,i) =  i [ ( * , ) ' ( / n) - 1(jWn)]-‘. (4.21)
n

The normalized criterion function value in the EMM estimation forms a specifi­

cation test for the overidentifying restrictions

NrhN{p, 9) 'Z - l m N(p, 9) ~  X 2(lg -  /p), (4.22)

with the degree of freedom equals lg — /p, the number of scores (i.e., moment condi­

tions) in the p model less the number of structural parameters, /p. It is assumed that

lp is smaller than  lg.

Note th a t the distance m atrix X used in constructing the X 2(lg — lp) specification 

test is identical across different structu ral model specifications (the null hypothesis).
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Consequently, the p-values based on this specification test can be directly compared 

across different structural models to identify the best model specification.8 It is 

well recognized in the literature, tha t tests for the absence of regime-shifts against 

a regime shift alternative require non-standard approaches (see Hansen (1992) and 

Garcia (1992)). The approach of comparing all the considered models to a common 

non-parametric density (the SNP density), allows us to rank order all the consid­

ered models according to the p-values implied by the EMM criterion function. The 

advantage of using the non-param etric SNP is th a t it can asymptotically converge 

to virtually any smooth distributions, including m ixture distributions (as is the case 

with a model of regime shifts), as documented in Gallant and Tauchen (199Sa). Fur­

ther, Gallant and Tauchen (199Sa) show EMM can provide more efficient estim ates 

relative to alternative m ethod of moment estim ators such as simulated method of 

moments (see Duffie and Singleton (1993)).9

4.4 Empirical R esults from EM M  Estimation

4.4.1 D ata Description

The data set ranging from June 1964 to December 1995, is obtained from the Center 

for Research in Security Prices (CRSP). There are total 379 monthly observations, 

with nine m aturities 1, 3, 6, 9 m onth and 1, 2, 3, 4, 5 year. These discount bond yields 

were first constructed by Fam a (1984) and Fama and Bliss (1987), and subsequently 

updated by CRSP. Longstaff and Schwartz (1992), also use this data set to estim ate 

their term  structure model.

It is im portant to recognize th a t the  data  period 1964-1995 contains different

8 For a discussion o f the importance o f having the same distance matrix, for a consistent comparison 
across models, see Hansen and Jagannathan (1997).

9 As is typical with GMM-type estimators, several Monte Carlo studies have documented the over - 
rejection bias of EMM (Chumacero 1997, Andersen et al. 1999c, Zhou 1999a), in small to moderate 
sample sizes, therefore the test is more conservative and cautious in model selection.
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Federal Reserve monetary policies, which as stated earlier provides the economic 

motivation for incorporating regime shifts. From 1970-79 the Federal Reserve by 

and large pursued a policy of interest rate targeting though monetary targets were 

also taken into account. However, beginning from 1979, for a  three year period, 

the Federal Reserve abandoned the policy of targeting interest rates and focused 

primarily on m onetary targets. This policy, which saw very volatile interest rates, was 

abandoned in mid 1982 in favor of targeting interest rates and monetary aggregates. 

From 1993, the Fed’s focus has primarily been on interest rates (see Froyen (1996) 

for greater details). One would suspect th a t when interest rate targets are pursued 

the interest rate volatility would be low, while targeting monetary quantities would 

lead to greater interest rate volatility. In general, there have been im portant shifts in 

m onetary regimes which seem to affect the behavior of the term structure of interest 

rates.

The sum m ary statistics of these m onthly yields are give in Table 4.1. It is clear 

from the mean statistics tha t on average, the yield curve is upward sloping and 

concave. The standard deviation, positive skewness, and kurtosis are systematically 

higher for short m aturities than for long ones.

To incorporate im portant time-series and cross-sectional aspects of term  structure 

data I focus on a short term  and a long term  yield—the yield on the six m onth bill and 

the five year note. All the structural models, one, two, three factor with or without 

regime-switching are forced to m atch the conditional bivariate joint dynamics of these 

two yields. I did not use the one m onth or three month yield to represent the short 

end, because they are more likely to be influenced by liquidity needs (see Bansal and 

Coleman (1996) for such a model). The tim e series and first difference plots of the 

basis yields are reported in Figure 4.1. Many of the interesting dynamics of the two 

yields are recovered by the estim ated SNP density, which I discuss next.
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4.4.2 SNP Projection

The estimation results of auxiliary model are reported in Table 4.2 and 4.3. In the 

first step of EMM procedure, I tried to fit a seminonparametric (SNP) density of 

bivariate joint dynamics of the two basis yields. This SNP is a Hermite polynomial 

expansion of a normal density w ith the leading term  as VAR-in-mean and ARCH- 

in-standard deviation. Table 4.2 reports the choice of SNP density and the BIC 

criterion, based on which I choose our preferred specification. The leading term  of 

the bivariate SNP density, being conditionally normal, has I lag in the VAR based 

conditional mean (Lp =  1) and 5 lags in ARCH specification (Lr = 5). If all other 

term s in the SNP density where zeroed out, then the SNP density specification would 

indeed be this conditional normal density. However, the preferred specification allows 

for departures from conditional normality, in particular, it chooses a polynomial of 

order 4 (K .  =  4) in z; this choice leads to a “semiparametric ARCH” specification 

similar to that proposed by Engle and Gonzalez-Rivera (1991). This specification 

allows for skewness and kurtosis in the SNP distribution. Note tha t in our preferred 

specification the interaction term s above degree 2 are suppressed ( I z = 2), and the 

coefficients of the polynomial do not depend on x, that is K x =  O10.

The total number of param eters for this semi-parametric ARCH specification is 

2S, tha t is lg =  28. Hence the to ta l num ber of scores that I have from this SNP density 

is also 2S. The information criterion for choosing the preferred SNP specification is 

the  minimum value of BIC provided in Table 4.2. Table 4.3 gives the param eter 

estim ates of the SNP density. The preferred specification, for future reference is, 

=  1, Lr = 5, K .  =  4, and /-  =  2. Figure 4.2 presents a plot of the bivariate 

density.

10When the A'r =  0, it also follows that the r-polynom ial as coefficients o f r-polynomial are all 
constants, hence these coefficients are not depending on lag state x , i.e., Lp =  0. For greater 
details see Gallant and Tauchen (1997).
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It is fairly instructive to focus on some specific aspects of the estim ated bivariate 

density. The Top panel in Figure 4.4 and Figure 4.5 gives the estim ated conditional 

volatility of the 6-month and 5-year yields, which seems to be very persistent and 

fairly volatile. The short interest rate  has a wide range for the conditional volatility 

and the volatility peaks around 1980. The range for the five year yield volatility is 

narrow, relative to that of the 6-month yield. The Top Panel in Figure 4.7, shows 

the conditional correlation between the 6-month and 5-year yields, the range for 

this correlation is from about 40% to above 80%—a wide range indeed. The most 

volatile period for yields, the early 80’s sees, is associated with a considerable drop 

in the conditional correlation. The behavior of the conditional variance and the 

cross-correlation, as documented below, poses a serious challenge to the various term  

structure models under consideration.

4.5 Estimation R esults and Diagnostics

4.5.1 EM M  Specification Test Results

Table 4.4 gives the main EMM estim ation results of for different models: one-factor 

square-root (1-Factor[CIR]), one-factor regime-switching (l-Factor[RS]), two-factor 

square-root (2-Factor[CIR]), two-factor regime-switching (2-Factor[RS]), and three- 

factor square-root (3-Factor[CIR]). The result reported here are for simulation size of 

75,000. The square-root factors are generated monthly, and the bond price formula 

given in 4.18 is applied with one m onth being the time interval—consequently, the 

five year bond is treated as a  60 m onth bond (similarly for the 6-month bond). The 

data  tha t was used for estim ation was the monthly yield multiplied by 12, analogously 

the sim ulated monthly yields are also m ultiplied by 12.

The single factor CIR model (l-Factor[CIR]) is sharply rejected with p-value less 

than 0.0000. The magnitudes and signs of the param eter estimates are close to those
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reported in the literature. Keep in mind tha t the long-run mean 0, local variance 

cr, and risk premium A should be multiplied by 12 to  match the annualized model. 

The mean reversion k is not affected by sampling frequency, and is very persistent 

as typically reported. All the param eter estimates are significant.

The one factor model with regime-shifts is also rejected with a  p-value less than 

0.0000. It is worth noting the regimes do not differ much in the mean reversion 

coefficient or the long run mean. The key difference is in the volatility; regime 0 

volatility <r0, is more tha t twice th a t of in the low volatility regime, regime 1. In 

addition, the risk-premium param eter A is larger in the high volatility regime. All 

the parameters of this specification are estim ated fairly accurately.

Even without regime-switching, introducing a second factor make the test statis­

tics down to 62.376 with p-value smaller than 0.0000. Since the factors additively 

determ ine the short rate, the long run mean levels are about half of the one factor 

model. The first factor has higher mean reversion and a larger variance parameter, 

relative to the second factor. O ther than the risk premium param eter for the first 

factor, all param eter estimates are significant. The risk premium param eter for the 

first factor is not significantly different from zero. The inclusion of a second factor 

provides a significant improvement over the one factor benchmark model, though 

relative to the regime shifts one factor model, the improvement at best is very small.

The best model amongst all specification is the two-factor regime switching spec­

ification. This specification finds considerable support in the data, as the p-value for 

this specification is about 15%, which is well above conventional levels of significance. 

In term s of the parameters of interest, note that the first factor, for both regimes 

(i.e., 0 and 1), relative to the second factor has far greater mean reversion. For both 

regimes, the first factor is also more volatile relative to the second factor. The regime 

1 volatility param eters is larger for both  the factors, and in this sense it represents
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the more volatile regime. Additionally, the risk prem ium  param eter, for both fac­

tors, is larger for regime 1, the more volatile regime. Given the nature of the mean 

reversion, it seems tha t the second factor represents the level factor and the first, 

the slope factor. The regime probabilities (standard error) are tth =  0.91 (0.22) and 

7T0o =  0.94 (0.1S). All the param eters of the model are estim ated fairly accurately. 

These transition probabilities reported for the 2-Factor[RS] specification, are compa­

rable to those found in other studies, for example, 0.99 and 0.97 in Gray (1996), 0.99 

and 0.91 in Hamilton (19SS), and 0.99 and 0.94 in Cai (1994).

The 2-Factor[RS] model can be viewed as the 3 factor model with the regime 

switching factor being m ultiplicative or nonlinear switching process. For a fair com­

parison of this two factor regime switching model, I also estim ate a three factor 

CIR model. As Table 4.4 shows, 3-Factor[CIR] model is also sharply rejected with 

chi-square being 45.607 and p-value of 0.0001. All the  param eter estim ates are sig­

nificant, and all factors are associated with a positive risk premium. The first factor 

has a  high long run mean, relatively high mean reversion of 0.033, and a relatively 

smaller variance. The other two factors have greater persistence and volatility. Our 

empirical evidence suggests that the standard three factor CIR model cannot account 

for the observed behavior of the short and long yields used in this empirical exercise.

Using the estim ated param eter values and the variance-covariance m atrix, one
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can perform the £-test for some hypothesis of in terest.11 These test statistics suggest 

tha t the regime shifts are not an iid m ixture ( i7roo=i_^I, =  2.1507).

The first factor has significant regime switches in level, mean reversion, and 

volatility param eters—the t-ratios are tgl0=gn = 7.4972, tKl0=Kn = 2.7699, t<rw=on =  

45.9025, respectively. The risk premium of the regime switching factor, as measured 

by the difference of the risk premiums across the two regimes, is also sizable with 

t,\10=\n = 35.1633. Evidence for significant differences in regimes in the second factor 

is muted, with the t-ratios for the level, mean reversion and volatility parameters, 

being tg2Q=g2l = 1.7521, ^ 20=K21 =  5.6031, tC20=<72l =  3.4267, respectively. Further, 

the difference in the risk-premium param eter across regimes is not significantly dif­

ferent from zero as the t-ratio, t \ 20=\ 2l =  0.3763. In all there seems to be greater 

differences across regimes in the first factor, which as documented later in the paper, 

is intim ately related to volatility or spread.

A recent study by Dai and Singleton (2000) found that a three-factor affine pro­

cess model, similar to that proposed by Chen (1996), passes the standard statistical 

tests of over-identifying restrictions. The Dai and Singleton (2000) uses swap yields 

data after 1987 for their empirical exercise. By confining to the swap interest rate 

data  beginning in 19S7, much of the information regarding some of the most volatile 

periods of interest rates, e.g., 1979-1982, and in 1973-76, does not bear on the esti- 

11 For example, the t-test on whether the regime shifts are iid mixtures can be formulated as

Ho - TTOO = 1 — 7Tn,

 ̂ _  __________ 'too +  ‘h i — 1___________
\/var(jroo) +var(7rn ) -  2cov(n-00,7rn )

and the test on whether the two regimes are equally persistent can be formulated as

H q : ttqo =  t t i i .

j _  ____________ ^oo ~ ~11____________
\/var(jr00) +  var(jru ) -  2cov(iroo, ttu)

The formulas for testing other parameter restrictions across regimes are similar.
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mation. The sample from 1964-1995, has several features tha t are missing from the 

post 198S period. Indeed, the most challenging obstacle in term  structure modeling, 

as pointed out by Brown and Dybvig (1986), is to account for the apparent regime 

shift of Federal Reserve m onetary policy during 197S-1982. Further, as shown by 

Bansal et al. (199S) the model specification used by Dai and Singleton (2000) when 

applied to US Treasury yields, for the sample period of 1964-1995 is sharply rejected. 

In addition, as shown in this paper, a related three factor CIR model is also sharply 

rejected. In all, our specification tests provide considerable support for the two fac­

tor, regime switching model. All the benchmark CIR model specification (with up 

to three factors) are sharply rejected.

4.5.2 D iagnostics for Different M odel Specifications

In this section I provide a range of diagnostics which allow us to understand the 

strengths and weaknesses of the different model specifications. In particular, these 

diagnostics reveal why the 2-Factor[RS] specification finds considerable empirical sup­

port, while the  other specifications discussed above, do not. The diagnostics include 

looking at the t-ratios for the fitted scores, the re-projected density with its impli­

cations for the conditional volatility and cross-correlation for observed yields, and a 

comparison of the model implied term  structure relative to  tha t seen in the data.

For a reasonable structural model, all the 2S scores (moment conditions) used 

to estim ate the model param eters should be close to zero. Table 4.5 reports the t- 

tests for the 2S moment conditions for the various models. These 28 scores (moment 

conditions), should for a reasonable model specification, should be close to zero. The 

size of the t-ratios gives a sense of the scores which different model specifications have 

difficulty is fitting.

For reference note tha t for the Hermite polynomial part, refers to the

111

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

param eter before the polynomial term  with i-th  degree of power on the first variable 

(6 month yield) and j -th  degree of power on the second variable (5 year yield). For the 

VAR mean part, represents the param eter on variable i (i =  1,2) with j  lag.

For the ARCH standard deviation part, R { i , j ) denotes the param eter on variable i 

with j  lags, and the last term  R(3) is simply the constant covariance parameter. If the 

structural model under consideration fits the particular moment under consideration, 

then at conventional 5% levels of significance the t-ratio should be smaller than 1.96.

Overall it is clear tha t introducing additional factors improves the model’s ability 

to match the scores. In the context of the benchmark model, the three factor (see 

column 3-Factor [CIR]) model provides considerable improvement over the one (1- 

Factor[CIR]) and two factor (2-Factor[CIR]) specifications. The t-ratios for almost 

all scores are relatively smaller for the three factor specification. However, in an 

absolute sense the three factor model (3-Factor[CIR]) has considerable difficulty is 

m atching many of the Hermite polynomial scores and the ARCH specification scores. 

This suggests that the benchmark three factor model cannot capture the conditional 

skewness, kurtosis, and the second moment properties of the bivariate interest rate 

process. For the most preferred 2-Factor[RS] specification, all the moments in the 

conditional mean, all but one in the Hermite polynomial, all but four in the condi­

tional standard deviation, are fitted. The m agnitude of the highest t-ratio is 3.13 

(see ARCH, /2(2,5)), which relative to the size of the t-ratio for other specifications 

is quite small. Overall, this preferred specification also seems to have the great­

est difficulty is m atching the conditional volatility and correlation, i.e., the ARCH 

scores—though, it provides considerable improvement over all other models. The 2- 

Factor[RS] specification provides large gains in fitting the non-Gaussian polynomials 

(i.e., the Hermite param eters), suggesting tha t conditional skewness and kurtosis in 

the standardized innovations can be accounted for by this term  structure model.
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4.5.3 Reprojected D ensity  and Conditional Second M oments

The idea behind the reprojection technique (Gallant and Tauchen 1998b), is to char­

acterize the dynamics of a given vector of observed variables (i.e., observed yields) 

conditional on its lags. In models where there are latent factors or regimes, the 

re-projection density provides a  way to characterize the conditional density strictly 

in terms of observables (i.e., the yields). The re-projected density can be estimated 

by relying on simulated data  for the yield series from a given estim ated structural 

model. In our context, the reprojected density is the bivariate conditional density 

for the two yields under consideration, the 6-month and the 5-year yield.

Figure 4.3 compares the reprojected densities of marginal 6 month and 5 year 

yields with their projected ones. Given the estim ated model and the simulated out­

put for yields, the re-projected conditional density is estim ated by re-estimating the 

parameters of the SNP density, using the same specification as was used to char­

acterize the bivariate density of the 6-month and 5-year yields earlier (referred to 

as the unrestricted conditional density). Indeed, an reasonably good term  structure 

model would imply a re-projected conditional density which is very similar to the un­

restricted conditional bivariate density for the 6-month and 5-year yields. Once the 

re-projected density is estim ated, specific moments, such as the conditional variances 

and correlations, implied by the model specification can be computed. These condi­

tional moments are simply continuous functions of the conditioning information (i.e., 

lagged 6-month and 5-year yields) used to estim ate the re-projected density. Given 

the conditioning information, the  implications of a given model for any conditional 

moment of interest can be tracked down in the data  and compared to the conditional 

moment implied by the unrestricted SNP distribution.

It is worth noting tha t the  re-projected density, in our context, is the density for 

observed data  estim ated from a null model. For some specification, such as the three
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factor CIR model, or the two factor regime switching model, the conditional density 

for yields cannot be characterized by using only two yields (the 6-month, and 5-year 

yields). Hence the re-projected density provides a convenient and comparable bench­

mark to characterize the conditional density for the two yields under consideration, 

across different null models.

Figure 4.3 provides the comparison of re-projected density of the different models 

to the bivariate SNP conditional distribution estim ated earlier (referred to  as the 

unrestricted density). All the conditional densities are evaluated at the sample mean. 

The unrestricted 6 month SNP density has high peak and right tail relative to a 

normal density with same mean and variance. The l-Factor[CIR] model over fits the 

skewness, and the l-Factor[RS] model over fits the two tails. Both 2-Factor[CIR] and 

3-Factor[CIR] model have relatively high peakedness and the variances are relatively 

small. Our preferred 2-Factor[RS] model has a re-projected density tha t is fairly close 

to that observed in the data.

Turning to the 5 year yield, the unrestricted SNP density has a lower peak and 

skewed to the left, relative to the normal distribution. The l-Factor[CIR], and the

l-Factor[RS] model seriously fail to capture the observed density in the data. The 

peak of the 2-Factor[CIR] is too low, and its variance too high. The 3-Factor[CIR] 

model is slightly better, but the variance relative to the data is still small. Only 

the 2-Factor[RS] model gets the peak, tails, skewness, and kurtosis correct. Overall, 

the one factor models over fit the variance and the symmetry, while the multifactor 

models under fit the variance and skewness, except for the 2-Factor[RS] model.

Figures 4.4 and 4.5 compare the conditional volatility (the plot provides stan­

dard deviation) for the various model specifications—this reveals some sharp and 

im portant differences across models. First note tha t, in the data, the process for 

conditional variance for the 6-month yield is quite different from that of the 5-year
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yield. The range for the conditional volatility for the 6-month yield rate is much 

larger than  for the 5-year yield— the high end being almost three times the lowest 

for the 6-month, and two tim es for the 5-year yield. The short yield volatility is 

more persistent, while the long yield volatility seems more choppy. The single factor 

square-root model misses entirely the dynamics feature of the conditional variance. 

The near constant conditional volatility was also reported by Gallant and Tauchen 

(1998b), when a univariate square-root model is fitted to a single interest rate series. 

It should be pointed out th a t introducing regime-switching to the single factor model, 

does not provide visible improvement in capturing the term  structure volatility. In 

the two factor single regime model, the short yield volatility is only marginally better 

than the no-regime case, while the long yield volatility has significant improvement. 

In our fitted 2-Factor[RS] model, the reprojected volatility mimics the dynamics of 

the projected volatility extremely well. The long yield volatility almost completely 

m atches tha t observed in the data. Finally the three factor CIR model seems to 

capture general shape of the volatility much better than the 2-Factor[CIR] model, 

however, in an absolute sense it does not capture the volatility dynamics as well as 

the 2-Factor[RS] specification.

Figure 4.6 and 4.7 provide evidence regarding the conditional covariance and 

correlation between the 6-month and 5-year yield. Again, it is very clear tha t only 

the 2-Factor[RS] model succeeds in capturing the wide range of the covariance and 

correlation observed across these yields. The correlation varies from 40% to 80%. 

Note th a t while the conditional covariance increases during the very volatile period 

of the early 80’s, the correlation decreases—suggesting tha t the volatilities of the two 

yields rise more rapidly relative to the conditional covariance. The 3-Factor[CIR] 

model fails to capture the range or the conditional correlation, the 2-Factor[RS] 

model comes surprisingly close to capturing virtually all the observed dynamics of
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the conditional correlation between these yields.

Based on all the  diagnostics and the specification tests it seems that regime shifts 

are an im portant aspect of the behavior of the term  structure. In particular, they are 

quite important to account for the conditional volatility and cross-correlation across 

yields, along with the conditional higher moments such as skewness and kurtosis.

4.6 Cross-Sectional Implications and Regimes

In this section I document the cross-sectional differences across models—that is, the 

ability of different specifications to reproduce the observed yield curve at each date 

in the data. To avoid clutter I focus only on the empirically plausible specifications— 

the 2-Factor[CIR] model, 3-Factor[CIR] model, and the preferred specification, the 

2-Factor[RS] specification.

To derive the model implied term -structure for each date, in the context of the 

2-Factor[CIR] and 3-Factor[CIR] models, I simply recover the latent factors, by using 

the bond pricing function, and the estim ated parameters,

X t =  B -1 [Yt — A]. (4.23)

The K  vector of latent factors X t, cam be recovered by using K  observed basis 

yields, the estimated K  x  K  m atrix  of bond pricing param eters B, and the vector A. 

Given the vector X t , and the estim ated param eters, all the entire yield curve can be 

computed for each date in the data. By construction, the computed yield curve will 

pass through the basis yields. This approach to extract the latent factors is similar 

to tha t used in Chen and Scott (1993), and Duffie and Singleton (1997), amongst 

others. Note that in the 2-Factor[CIR] model, the computed yield curve will pass 

through two basis yields and in the 3-Factor[CIR] model through three basis yields.

To compare models, for each date I also compute the absolute average cross- 

sectional pricing error, with Y { n ) t being the computed yield at date t for a  given
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model specification,

p E t  =  Z S L ,  IY { n ) ,  -  V-(n),I ( 4 M )

Smaller the pricing error, be tter is the model specification. The pricing errors will 

arise due to model mis-specification.12

To com pute the yield curve for each date, under the null specification of 2- 

Factor[RS], one also needs to know the regime at each date. Recall, the yield curve, 

in addition to the two latent factors, also depends on the latent (i.e., to the econome­

trician) regime. To deal with this, I first extract the two latent factors (i.e., I\ — 2) 

using 4.23, the estim ated B St and A St, for s t =  0 and s t =  1. Given the latent 

factors and the estim ated param eters, I compute two potential yield curves for each 

date, one for s t =  0 and another for s t =  1. For each regime, it is straight-forward 

to compute the pricing error P E t , for s =  0,1. However, under the null of the 

2-Factor[RS] model specification, the pricing error (i.e., P E t ) associated with the 

regime that truly prevails in the economy at date t will be close to zero l3. Hence, 

the regime th a t prevails at date t is simply the one which has the smallest pricing 

error across regimes. W ith the knowledge of the regime at date t. the model implied 

yield curve and the pricing error also become available. Note that the computed 

yield curves and the pricing errors for 3-Factor[CIR] and the 2-Factor[RS] can be 

fairly compared—the 3-Factor[CIR] specification uses three basis yields, whereas the

2-Factor[RS] specification relies on two basis yields and an identification procedure 

for the regime classification.

Table 4.7 provides information of the average pricing error (i.e., P E t]/T).  

It is clear from the sample statistics tha t the 2-Factor[RS] model has the smallest 

12An additional source could be measurement errors in the data.

13Note that this procedure under the null of the model, will detect the regime correctly. For 
example, in our simulations o f the 2-Factor[RS] model, this procedure would indeed identify the 
correct regime— with the pricing error for the true regime being zero.
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average pricing error and also the smallest standard deviation in the pricing error. 

The maximal pricing error associated with the 2-Factor[RS] classification is also the 

smallest. Further, on average the pricing error is only about 23 basis points for 

the annualized percentage yields—a small number indeed. The 3-Factor[CIR] spec­

ification has a average pricing error of 25 basis points, which in an absolute sense 

is also quite small. Fig 10 provides the computed yield curves for dates which are 

30 months apart—these graphs re-enforce the view that the 2-Factor[RS] specifica­

tion is the preferred one. The earlier evidence from our specification tests and the 

re-projection based diagnostics showed tha t the 2-Factor[RS] is by far the preferred 

model—this view is further corroborated by the cross-sectional evidence.

Figure 4.9 provides the results from the regime classification. Most of the time, 

it seems tha t the economy is in regime 1. The total number of regime switches 

recovered from the sample period is 44, which is larger enough for identifying the 

regime probabilities. The regime classification by and large coincides with the NBER 

business cycles. It seems that regime 0, obtains during or around recessions in the 

economy. The relatively frequent regime shifts between 1991-1995, shown in Fig 9, 

reflects almost identical average pricing error across regimes at those dates. Virtually 

identical pricing error across regimes for a given date implies tha t the data is not 

particularly informative regarding the regime classification.

The estim ation results discussed earlier suggested tha t the first factor has con­

siderable differences, especially in volatility, across regimes. Figure 4.S shows tha t 

the recovered first factor tracks the short yield very well, while the second tracks 

the long yield. The correlation between the NBER recession (recession is regime 0 

and boom is regime 1) indicator and recovered regime indicator is 0.1523, exclud­

ing the early 1990s where regime identification is poor (the analogous correlation for 

the entire sample is 0.0762). Correlation between NBER recession indicator and the
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yield spread (5 year yield minus 6 m onth yield) is as high as 0.2342. Correlation 

between the model based regime indicator and yield spread is 0.2299-that is, high 

volatility regimes have high yield spreads. In general, considerable caution should 

be exercised in interpreting the regime classification as there is considerable error in 

this classification due to param eter uncertainty and model misspecification.1'1

Table 4.S provides some simple statistics relating to the 6-month and 5-year yields, 

obtained from the simulated yields from the preferred 2-Factor[RS] model. The 

different statistics are computed by regime s =  0 ,1. The sample counterparts of 

the various statistics are computed by relying of the regime classification, discussed 

above, and the observed yield data. The absolute value of first difference in the yield 

(a measure of the ex post standard deviation) and the average yield spread (slope) is 

higher in the more volatile regime s =  1— both in the population (based on simulated 

data  from the model) and in the sample. The mean is not very different across the 

two regimes. The average convexity,15 is larger in regime 0. Figure 4.11 plots the 

yield curves for different combinations of the state variables,16 and in each case the 

slope of the yields curve is larger in the more volatile regime (i.e., regime 1). This 

suggests that the main observable differences across regimes lie in the yields spread 

and volatility of the yields. Considerable caution should be exercised in interpreting 

the sample statistics as they are based on a regime classification which potentially 

contains considerable error.

The differences in volatility across regimes is consistent with the economic impli­

cations for volatility of interest rates when the monetary policy switches from one of

14The fact that there is positive pricing error for all dates in both regimes suggests that the regime 
switching model is misspecified, from the cross-sectional perspective.

15The convexity is computed as [(Vj3!,r — Yt2yr) — [ Y 2'jr  — V'£lyr)], which is an discrete approximation 
to the second derivative or convexity taking the time interval to be one.

16The state variables are the x ’s. Note that in different combinations of the two x's, the sum equals 
to the risk-free rate. All the chosen combinations imply the same risk-free rate. This is done for 
comparability.
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prim arily targeting money growth rather than short term  interest rates. As discussed 

earlier, in 1979, m onetary policy in the U.S. did switch to targeting money growth, 

and then in 19S2 switched back to targeting primarily interest rates. These episodes, 

along with other less prominent policy switches are a part of the yield data  used in 

our empirical exercise.

4.7 Concluding Remarks

There is considerable statistical evidence regarding the presence of regime shifts in the 

short interest rate data  (see Hamilton (19SS, 1996)). In addition, there are economic 

reasons as well to believe tha t interest rates are subject to  regime shifts. The conduct 

of m onetary poiicy has first order effects on the term structure, and as has been well 

documented, is subject to discrete changes is regimes( see Froyen (1996)). Despite 

the potential for im portant effects from discrete regime shifts, received term structure 

models, such as the Cox et al. (19S5a) model do not incorporate them. The absence 

of this im portant component in these models may well explain their poor empirical 

performance (see Brown and Dybvig (19S6), etc.).

The main contribution of this paper is to show that an internally consistent model 

of the term  structure, which incorporates regime shifts, provides significant improve­

ments over multi-factor versions of the CIR. model. More specifically, I develop and 

estim ate a model for the term  structure which permits regime shifts. One can show, 

tha t a model which incorporates regime shifts is essential to account for the con­

ditional joint dynamics (i.e., the conditional distribution) of short and long yields. 

For comparison with an commonly used model, I also estim ate multi-factor versions 

of the CIR model. The empirical exercise is conducted by relying on nominal U.S. 

treasury bill and bond yields from 1964-1995. For estimation, and specification tests, 

of the various models I use the Efficient M ethod of Moments technique developed
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in Bansal et al. (1995) and Gallant and Tauchen (1996b). I also provide a battery  

of diagnostics to evaluate the various model specifications, in particular, I rely on 

the re-projection method of Gallant and Tauchen (1998b), to recover the conditional 

density for yields (conditional on lagged yields) to evaluate the merits of the different 

model specifications.

The empirical evidence shows tha t standard Cox-Ingersoll-Ross term  structure 

models, with up to three factors are sharply rejected in the data—these models can­

not account for the conditional volatility and cross-correlation across yields observed 

in the data. This standard model also fails to account for the skewness and kurtosis 

found in the interest rate  data. A two factor regime switching model finds consider­

able support in the data and does surprisingly well in accounting for the conditional 

volatility and cross-correlation of the short and long yields. Further, the absolute 

pricing error in reproducing the observed yield curves at different dates in the data  

is smallest for the two factor regime-switching model. This preferred model seems 

to capture the conditional distribution of yields fairly well. The evidence shows tha t 

there is an intim ate link between business cycles and regimes extracted from the term  

structure model—the main differences across extracted regimes is in the short rate 

volatility and the yield spread.

4.8 Tables and Figures
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T ab le  4.1: Sum m ary Statistics of Monthly Yield Data 
There are 379 monthly observations of the yields with nine m aturities. The data  is 
obtained from CRSP (Center for Research in Security Prices) Fama (19S4) and Fama 
and Bliss (19S7) bond files, ranging from June 1964 to December 1995.

Maturity lm n 3mn 6mn 9mn lyr 2yr 3yr 4yr Syr
Mean 0.0645 0.0672 0.0694 0.0709 0.0713 0.0734 0.0750 0.0762 0.0769
Std Dev 0.0265 0.0271 0.0270 0.0269 0.0260 0.0252 0.0244 0.0240 0.0237
Skewness 1.2111 1.2118 1.1518 1.1013 1.0307 0.9778 0.9615 0.9263 0.8791
Kurtosis 4.5902 4.5237 4.3147 4.1605 3.9098 3.6612 3.5897 3.5063 3.3531
Minimum 0.0265 0.0277 0.0287 0.0299 0.0311 0.0366 0.0387 0.0397 0.0398
05% Qntl 0.0313 0.0337 0.0356 0.0371 0.0376 0.0403 0.0427 0.0446 0.0447
25% Qntl 0.0457 0.0485 0.0510 0.0530 0.0537 0.0546 0.0572 0.0585 0.0599
50% Qntl 0.0579 0.0599 0.0634 0.0650 0.0666 0.0691 0.0709 0.0721 0.0735
75% Qntl 0.0782 0.0806 0.0821 0.0836 0.0830 0.0851 0.0857 0.0858 0.0861
95% Qntl 0.1197 0.1264 0.1294 0.1311 0.1286 0.1278 0.1298 0.1271 0.1272
Maximum 0.1640 0.1612 0.1655 0.1644 0.1581 0.1564 0.1556 0.1582 0.1500
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Table 4.2: SNP Score Generator 
The SNP score generator has a leading ARCH term  with L^ lags in conditional
mean, Lr in conditional standard deviation. The standardized innovation has a
normal density stretched by a squared Hermite polynomial with degree of A \. Since
it is a bivariate SNP density, the interaction polynomial term above the Iz degree is
suppressed as zero. Similarly the coefficient of the ^-polynomial may depend on the
lagged history through a K x degree polynomial with the interaction term  above Ix
degree being suppressed as zero. The lag order Lv on x-polynomial is inoperative if
I\x =  0. The total number of param eters is lg. The BIC preferred choice is 1514200.
The last two columns report the minimized objective function

sn(0) = - ^ S lo g L f t& l^ - i ,® ) ]
n t-i

and BIC information criterion

B I C -- 71(*") +
l-e 

2 n l°g( n).

Lr L/p F\ z I; Ax lr le Sn(0) BIC
1
2
3

0
0
0

1 0 
1 0 
1 0

0
0
0

0
0
0

0
0
0

9
13
17

-0.79431
-0.82011
-0.82763

-0.72073
-0.71383
-0.68865

1 1 1 0 0 0 0 11 -0.96388 -0.87395
1 2 1 0 0 0 0 13 -0.98904 -0.88276
1 3 1 0 0 0 0 15 -1.01872 -0.89609
1 4 1 0 0 0 0 17 -1.07256 -0.93358
1 5 1 0 0 0 0 19 -1.09188 -0.93656
1 6 1 0 0 0 0 21 -1.09328 -0.92160
1 7 1 0 0 0 0 23 -1.09922 -0.91119
1 5 1 4 3 0 0 27 -1.14488 -0.92416

-»• 1 5 1 4 2 0 0 28 -1.17202 -0.94311
1 5 1 4 1 0 0 30 -1.17230 -0.92704
1 5 1 4 0 0 0 33 -1.20102 -0.93124
1 0 1 5 4 0 0 29 -1.15141 -0.91433
1 5 1 5 3 0 0 30 -1.17326 -0.92801
1 5 1 5 2 0 0 32 -1.18655 -0.92494
1 5 1 5 1 0 0 35 -1.21327 -0.92714
1 •5 1 5 0 0 0 39 -1.21690 -0.89807
1 5 1 6 5 0 0 31 -1.17734 -0.92391
1 5 1 6 4 0 0 32 -1.18399 -0.92239
1 5 1 6 3 0 0 34 -1.18758 -0.90962
1 5 1 6 2 0 0 37 -1.19769 -0.89521
1 5 1 6 1 0 0 41 -1.22820 -0.89302
1 5 L 6 0 0 0 46 -1.23516 -0.85910
1 5 1 4 2 1 0 48 -1.24496 -0.85256
1 5 1 4 2 2 1 68 -1.28923 -0.73332
1 5 1 4 2 2 0 78 -1.30853 -0.67087
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T ab le  4.3: Param eter Estim ates of Projected SNP Density 
The SNP density is described in Section 4.3.1, and the specification search is reported 
in Table 4.2. The param eter in the Herm ite polynomial function a { i , j ) stands for 
the term  with f th  power on the short yield and j ’th  power on the long yield. The 
param eter in the conditional mean function is respectively//(l, 0) constant in short 
yield, /z(l,0) in long yield, ^ (1 ,1 ) lag one short yield in short yield equation, /z(2,1) 
lag one long yield in short yield equation, /z(l,2 ) lag one short yield in long yield 
equation, and fi(2,2) lag one long yield in long yield equation. The param eter in 
ARCH standard deviation function is R(k , l )  is the short yield (k  = 1) or long 
yield (k  =  2) with lag equals to /. R(3) is the constant off-diagonal term , a partial 
contribution to the covariance. The negative sample mean log-likelihood sn and BIC 
information criterion are the same as Table 4.2.

Parameter Estimate Standard Error
Hermite a(0 ,0) 1.00000 (0.00000)

a(0 ,l) -0.03861 (0.08103)
a(l,0 ) 0.49154 (0.10908)
a (0,2) -0.13739 (0.06996)
a ( l , l ) 0.17944 (0.07162)
a(2,0) -0.00415 (0.09781)
a(0 .3) 0.01735 (0.01406)
o(3,0) -0.06015 (0.04077)
a(0,4) 0.02044 (0.00742)
a(4 ,0) -0.01098 (0.01556)

Mean /z(2,0) -0.09681 (0.01521)
/z(l,0) -0.02068 (0.01273)
fi( 2,2) 0.95940 (0.02201)
H{'2,1) 0.02563 (0.01576)
/i(l,2 ) -0.01187 (0.01954)
/*(!,!) 0.01529 (62.097)

ARCH R(1,0) 0.04595 (0.01034)
R{ 2.0) 0.08426 (0.01093)

m 0.19853 (0.07145)
R{ 1,1) 0.10511 (0.01548)
R('2,1) 0.12883 (0.04020)
R{ 1,2) -0.01868 (0.05845)
R( 2,2) 0.13730 (0.04346)
^(1,3) 0.02818 (0.06784)
R{ 2,3) 0.07998 (0.04836)
i2(l,4) 0.25753 (0.07586)
R(2,4) 0.12819 (0.05029)
£ ( M ) 0.03728 (0.05829)
R( 2,5) 0.22468 (0.05443)

Spec =  sl514200 sn =  -1.17202 BIC =  -0.94311
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Table 4.4: Model Estim ation by Efficient Method of Moments 
The five term structure models are laid out in Section 4.2. The simulation size in 
EMM is 75,000 for all the five models.

L-Factor[CIR] l-Factor[RS] 2-Factor[CIR] 2-Factor[RS] 3-Factor[CIR]
Factor 1 Regime 0 
0io .00612(.00006) 
kio .01638(.00057) 
o-io .00404(.00003) 
A10 -.00578(.00047) 
Factor 1 Regime 1 
0n  
/in  
CTll
An

.00526(.00009) 

.01644(.00068) 

.00544(.00012) 
-.00337(.00049)

.00589(.00026) 
-01536(.00115) 
.00224(.00006) 

- .0 1284(.00068)

.00296(.00025) 

.02888(.00392) 

.00424(.00014) 

.00157(.00354)

.004371.00003)

.03388(.00199)

.00421(.00002)

.011551.00112)

.00273(.0000l)

.04375(.00136)

.00629(.00002)
-.031451.00086)

.00348(.00006)

.03309(.00127)

.00328(.00007)
-,00254(.00221)

Factor 2 Regime 0 
020 
*20 
<720
A2 0

Factor 2 Regime 1 
@21 
/Col 
(Toi 
A2 1

,00171(.00015)
.00489(.00015)
.00303(.00018)

-.02157(.00024)

.00076(.00001)

.01501(.00019)

.00392(.00003)
-.02079(.00005)

.00540(.00144)

.00344(.00102)

.004091.00004)
-.02287(.00075)

.00051(.00002)
,03031(.00190)
.00698(.00033)

-,01658(.00233)

Factor 3 Regime 0
030
*30
0 3 0

A3 0

.00050(.00001)

.02377(.00359)

.00452(.00014)
-.04793(.00327)

Transitional Probability P r {s(+ i |s t }
7T0 0  .97564(.00002) 
TTn .94489(.00000)

.94990(.18118)

.91993(.22329)
Specification Test 
X 2 132.017 72.245 62.376 14.717 45.607
P 0.0000 0.0000 0.0000 0.1427 0.0001
d.o.f. 24 18 20 10 16
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T ab le  4.5: Diagnostic T-Ratios 
The score generator is sl514200 as reported in Table 4.2, and the param eters have 
same explanations as in the note of Table 4.3. The T-ratios are testing whether the 
fitted sample moments are equal to zero, as predicted by by population moments of 
the SNP density.

Parameter l-Factor[CIR] l-Factor[RS] 2-Factor[CIR] 2-Factor[RS] 3-Factor[CIR]
Hermite a ( 0 ,1) -0.084 1.708 -0.792 -0.583 -1.019

a ( l ,0 ) -2.601 -2.309 -1.395 0.432 -0.784
a(0 ,2) 5.275 2.909 3.712 1.704 3.312
a ( l , l ) -2.607 -0.776 1.247 1.041 2.868
a(2 ,0 ) 5.667 4.116 5.284 2.557 5.117
a(0 ,3) 0.667 2.364 -0.309 -0.209 -0.372
«(3 ,0) 1.106 -0.658 0.519 0.680 0.470
a(0 ,4) 4.532 2.349 3.443 1.647 3.013
a(4 ,0) 4.007 2.239 2.821 1.622 2.837

Mean /i(2 ,0 ) -4.324 -4.186 -1.862 0.112 -0.086
M i.O ) -0.362 0.757 -0.742 -1.773 -1.350
ft( 2 ,2 ) -1.157 -0.191 0.313 -1.099 -0.351
M(2,1) 1.295 1.861 1.004 1.409 1.712
M l ,2) -1.630 -0.906 0.048 -0.841 -0.348
M M ) 1.135 2.032 0.613 1.576 1.477

ARCH /?(1,0) 6.736 4.682 5.765 2.943 4.902
R(  2 ,0 ) -4.992 -2.708 0.039 0.437 2.584

R(  3) 4.850 3.916 2.487 0.985 1.717
R (  1,1) 6.807 4.063 2.695 1.796 1.925
R( 2 ,1 ) 4.759 4.404 5.709 2.791 5.095
R( 1,2) 3.420 2.106 -0.214 0.326 0.151
* (2 ,2 ) 4.522 3.410 4.122 2.326 3.961
f i ( l ,3 ) 4.479 3.838 1.775 0.678 1.061
fl(2 ,3 ) 5.275 3.662 5.382 2.898 5.238
* (1 ,4 ) 6.447 4.237 3.196 2.252 2.334
* (2 ,4 ) 4.643 3.727 3.913 2.603 3.421
R{ 1,5) 3.858 2.541 1.020 1.984 1.117
R[ 2 ,5) 5.678 5.066 4.848 3.131 4.709
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T ab le  4.6: Comparing Summ ary Statistics of Structural Simulations 
The observed data of 6 m onth and 5 year yields are the same as those in Table 4.1. 
The number of simulations from the structural models is 50,000.

6mn Yield l-Factor[CIR] l-Factor[RS] 2-Factor[CIR] 2-Factor[RS] 3-Factor[CIR]
Mean 0.0716 0.0643 0.0588 0.0625 0.0547
Std Dev 0.0193 0.0217 0.0214 0.0192 0.0122
Skewness 0.4877 0.6690 1.2659 0.9793 0.6478
Kurtosis 3.2425 3.9234 5.6704 5.2883 3.7180
Minimum 0.0180 0.0071 0.0112 0.0175 0.0194
05% Qntl 0.0428 0.0324 0.0314 0.0358 0.0371
25% Qntl 0.0577 0.0494 0.0442 0.0494 0.0463
50% Qntl 0.0701 0.0625 0.0552 0.0600 0.0535
75% Qntl 0.0835 0.0766 0.0695 0.0730 0.0618
95% Qntl 0.1059 0.1034 0.0983 0.0970 0.0770
Maximum 0.1576 0.1776 0.1818 0.2071 0.1182
5yr Yield l-Factor[CIR] l-Factor[RS] 2-Factor[CIR] 2-Factor[RS] 3-Factor[CIR]
Mean 0.0811 0.0737 0.0780 0.0788 0.0715
Std Dev 0.0146 0.0169 0.0305 0.0212 0.0130
Skewness 0.4877 0.6113 1.7656 1.8291 1.2199
Kurtosis 3.2425 3.8216 7.6753 9.7194 5.1770
Minimum 0.0405 0.0289 0.0298 0.0416 0.0451
05% Qntl 0.0593 0.0484 0.0443 0.0547 0.0552
25% Qntl 0.0706 0.0620 0.0569 0.0641 0.0623
50% Qntl 0.0800 0.0725 0.0709 0.0741 0.0689
75% Qntl 0.0901 0.0834 0.0911 0.0884 0.0779
95% Qntl 0.1071 0.1040 0.1355 0.1176 0.0968
Maximum 0.1462 0.1577 0.2737 0.2874 0.1564

Table 4.7: Average Absolute Pricing Error 
The pricing error is in the unit of basis point. There are 9 m aturities (1, 3, 6, 9 month; 
1, 2, 3, 4, 5 year) for each of 379 dates. The absolute pricing error of l-Factor[CIR] 
model is over 8 points, l-Factor[RS] and 2-Factor[ClR] over 7 points, 2-Factor[RSj 
and 3-Factor[CIR] over 6 points. The sum m ary statistics of the absolute pricing 
errors are calculated over the 379 dates for each of the five models.

l-Factor[CIR] l-Factor[RS] 2-Factor[CIR] 2-Factor[RS] 3-Factor[CIR]
Mean 47 43 30 23 25
Std Dev 28 27 18 16 21
Minimum 5 4 3 3 1
Maximum 174 175 121 114 133
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T ab le  4.8: Identifying Regimes by Model Free Characteristics 
The numbers in the table are basis points. The comparison is m ade across the 
two regimes in the population 2-Factor[RS] model and sample observations. The 
convexity is calculated using 1, 2, and 3 year adjacent yields, and the results are 
similar for other m aturity  combinations.

6 Month Yield 5 year Yield
Volatility or Mean \Yt — V’,_i| Regime 0 Regime 1 Regime 0 Regime 1
Population 27 37 23 31
Sample 32 38 33 30

6 Month Yield 5 year Yield
Level or Mean Yt Regime 0 Regime 1 Regime 0 Regime 1
Population 626 624 763 828
Sample 721 691 718 775
Slope or Mean Spread Regime 0 Regime 1
Population 137 204
Sample -3 84
Steepness or Mean Convexity Regime 0 Regime 1
Population 0.52 -13.00
Sample 16.00 -7.76
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6 Month Yield Level
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5 Year Yield Level
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6 Month Yield First Difference
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-0.04
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5 Year Yield Rrst Difference

F ig u re  4.1: Observed Yields and First Differences
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Joint Density C ontour a t 10%
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0.065 0.07 0.075 0.08 0.085 0.09
5 Year Rate

F ig u re  4.2: SNP Joint and Marginal Densities 
The top-left panel is the joint SNP density, and the top-right is quantile contour plot
at 10% intervals. For bottom  panels, the solid lines "---- ” are SNP marginal densities
and the dashed lines “----- " are normal densities with same mean and variance.
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F ig u re  4.3: Projected and Reprojected Densities
The symbols axe: “---- ” Gaussian densities with same mean and variance,
projected or reprojected densities.
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Volatility: 6 Month Yield
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F ig u re  4.4: Matching Conditional Short Volatility 
Projected and Reprojected Conditional Standard Deviation of 6 Month Yield.
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Volatility: 5 Y ear Yield
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F ig u re  4.5: M atching Conditional Long Volatility 
Projected and Reprojected Conditional Standard Deviation of 5 Year Yield.
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F ig u re  4.6: Matching Conditional Variance 
Projected and Reprojected Conditional Covariance of 6 Month and 5 Year Yields.
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Figure 4.7: M atching Conditional Correlation 
Projected and Reprojected Conditional Correlation of 6 Month and 5 Year Yields.
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F ig u re  4.8: CIR Factors and Observed Yields in 2-Factor[RS] Model.
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Extracted Regime Indicator by Minimizing Pricing Error 
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F ig u re  4.9: Regime Classifications and Economic Indicators in 2-Factor[RS] Model.
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F ig u re  4.10: Point in Time Yield Curve
The symbols are respectively: “o o o” observed yield. "-----“ 2-Factor[CIR],
2-Factor[RS], “-----” 3-Factor[CIR].
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Chapter 5 

Estim ating Stochastic Volatility Diffusions

1 This essay exploits the distributional information contained in high-frequency in­

traday data  in constructing a simple conditional moment estim ator for stochastic 

volatility diffusions. The estim ator is based on the analytical solutions of the first 

two conditional moments for the integrated volatility, which is effectively approxi­

m ated by the quadratic variation of the process. The resulting GMM estim ator is 

successfully implemented with high-frequency five-minute foreign exchange and eq­

uity index returns. Both simulation evidence and actual empirical results indicate 

tha t the method is very reliable and accurate. The computational speed of the proce­

dure compares very favorably to other existing estimation methods in the literature.

5.1 Introduction

Continuous time m ethods and no-arbitrage arguments figure prominently in the the­

oretical asset pricing literature. However, some of the most influential contributions 

have been based upon fairly simple and restrictive assumptions concerning the pro­

cess for the underlying sta te  variable(s) leading examples include the celebrated

Black-Scholes option pricing formula, which assumes that the true process for the un­

derlying asset follows a geometric Brownian motion; and the CIR model for the term 

structure of interest rates, which is derived under the assumption of a square-root pro­

cess for the short rate. Meanwhile, the  burgeon empirical literature on discrete time 

ARCH and stochastic volatility models (see Bollerslev, Engle, and Nelson (1994) and

'The main result o f the this essay also appears in a paper distributed under the title “Estimating 
Stochastic Volatility Diffusions Using Conditional Moments of Integrated Volatility” (Bollerslev 
and Zhou 2000).
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Ghysels, Harvey, and Renault (1996)), have called into question the empirical validity 

of a  tim e invariant diffusion, or a  single state variable, as a reasonable assumption 

for most speculative rate of re turn  series. In response to this, several recent studies 

have utilized more realistic continuous tim e models, explicitly allowing for tim e vary­

ing volatility in the state variables. The Hull and W hite (19S7) and Heston (1993) 

stochastic volatility option pricing formula, and the exponential-affine class of term  

structure models in Duffie and Kan (1996) and Dai and Singleton (2000), are all 

notable examples.

Aside from a few special cases, estim ation of these continuous tim e stochastic 

volatility models are complicated by the lack of a closed form expression for the tran­

sition density function for the corresponding discretely sampled observations, and 

numerous competing estimation strategies have been proposed in the literature. An 

incomplete list of these different techniques includes the Markov Chain Monte Carlo 

(MCMC) methods advanced by Jacquier, Poison, and Rossi (1994), Eraker (199S), 

Kim, Shephard, and Chib (1998) and Elerian, Chib, and Shephard (1998); the sim­

ulated methods of moments approach in Duffie and Singleton (1993); the indirect 

inference procedure of Gourieroux et al. (1993) utilized by Engle and Lee (1997); the 

Efficient Methods of Moments (EMM) developed by Gallant and Tauchen (1996b) and 

Gallant and Long (1997) and implem ented by Andersen et al. (1999c); the infinites­

imal moment generator underlying the GMM procedure in Hansen and Scheinkman 

(1995) and Conley et al. (1997a); the non-param etric series expansions of the transi­

tion density function advocated by Ai't-Sahalia (1996a) and Stanton (1997) and the 

related kernel estim ator in Bandi and Phillips (1999); the approximation method to 

the likelihood function building on the  Kolmogorov forward equations in Lo (1988) 

and Ai’t-Sahalia (199S); and the spectral GMM estim ator utilizing the empirical char­

acteristic function in Chacko and Viceira (1999) and Singleton (1999). While all of
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these procedures yield consistent, and in most cases also asymptotically efficient, pa­

ram eter estimates for the various model specifications, they are all computationally 

demanding and cumbersome to implement in practice.

This chapter proposes a  new, much easier to compute, estimation procedure for 

stochastic volatility diffusions. The basic idea is straight forward. Instead of inte­

grating out the latent volatility, as it is implicitly done in the estimation procedures 

in the extant literature, the strategy proposed here utilizes high-frequency data for 

explicitly measuring the realized volatility.

High-frequency, or tick-by-tick, data have recently become available for a host 

of different financial instrum ents. Following the work of Merton (1980) and Nelson

(1992), such data could in principle be used to construct point-wise consistent filter­

ing measurements for the instantaneous volatility. Unfortunately, the optimal filter 

weights depend in complicated ways on the particular model structure (Nelson and 

Foster 1994), and in practice the continuous record asymptotics underlying the the­

oretical arguments are corrupted by inherent discreteness, time-of-day effects, bid- 

ask spreads, and other m arket m icrostructure frictions.2 Meanwhile, it is possible 

to construct model-free unbiased estimates of the integrated volatility over a  fixed 

tim e interval, say one day, by simply summing the squared returns over the rel­

evant time-period. Moreover, by the theory of quadratic variation, the sum of the 

squared inter-period returns afford increasingly more accurate ex-post volatility mea­

surements as the length of the ret urn-horizon decreases.3 Motivated by this idea, An­

dersen, Bollerslev, Diebold, and Labys (1999b) and Andersen, Bollerslev, Diebold,

2In a related context, Brandt and Santa-Clara (1999) and Ledoit and Santa-Clara (1999) suggest 
using Black-Scholes implied volatilities for short-lived at-the-money options to estimate the in­
stantaneous volatility. In practice, this implicitly assumes that the volatility is constant over the 
remaining life of the option, and that the volatility risk is not priced.

A lternatively, it is possible to extract information about the forward integrated volatility from 
the high-low range of the discretely sampled data as in Gallant, Hsu, and Tauchen (1999). Also, 
Alizadeh, Brandt, and Diebold (1999) have recently proposed using the high-low range as a volatil­
ity proxy in a Gaussian quasi-maximum likelihood estim ation procedure for a simple stochastic 
volatility model.
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and Ebens (2000b) offer a  detailed descriptive characterization of the salient dis­

tributional features of daily realized foreign exchange and individual stock return 

volatilities constructed from high-frequency five-minute returns.

Here, by matching the sample moments of the realized volatility to the population 

moments of the integrated volatility implied by a particular continuous-time model 

structure, a standard, and easy-to-compute, GMM -type estim ator for the underlying 

model param eters is immediately applicable. For concreteness we restrict the analysis 

in the paper to the square-root, or affine, class of stochastic volatility models. This 

particular class of models arguably constitutes the leading case in the literature, but 

the m ethod is general. In particular Barndorff-Nielsen and Shephard (1999) present 

analytical expressions for the moments of the integrated volatility for a general class 

of continuous tim e stochastic volatility models, in which the instantaneous variance is 

defined by the sum of multiple Ornstein-Uhlenbeck processes, each of which is driven 

by a homogeneous Levy process.

The rest of the paper is organized as follows. The next section demonstrates 

how the population moments for the integrated volatility may be derived from the 

moments for the point-in-time volatility. This section also briefly discusses the basic 

GMM setup employed in the estimation. The Monte Carlo simulations in Section 5.3 

highlight, tha t the method works very well in empirically realistic finite sample set­

tings, and tha t the efficiency of the param eter estim ates compares favorably to tha t 

of a non-feasible QML procedure treating the instantaneous volatility as observable. 

The statistical inference concerning the true values of the individual param eters and 

the overall fit of the model are generally also very reliable. The only caveat is a 

negligible upward bias in the estimates of the variance-of-variance param eter. This 

is directly attributable  to the measurement error in the quadratic variation as a 

proxy for the integrated volatility, and we show how a simple adjustm ent term  in the

142

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

moment conditions is effectively able to elim inate this bias. Section 5.4 gives the em­

pirical results from applying the new estim ation procedure to a set of high-frequency 

five-minute foreign exchange rates and Japanese equity index returns. Section 5.5 

concludes. M athematical details regarding the derivation of the moment conditions 

for the integrated volatility are relegated to a technical appendix.

5.2 Estim ating Stochastic Volatility Diffusion

The basic estimation strategy builds on the usual asymptotic theoLy of GMM assum­

ing an increasing number of discretely sampled observations (Hansen 19S2). However, 

the construction of the sample moments explicitly relies on the availability of high- 

frequency data, and the almost sure convergence of the quadratic variation to the 

integrated volatility of the process. I begin with a general discussion of the main 

idea, and then proceed to a concrete illustrative example.

5.2.1 Integrated Volatility and GM M  Estimation

To set out the main idea, let pt denote the tim e t logarithmic price for some asset. 

The generic continuous tim e stochastic volatility model may then be w ritten as

dpt = {j.{pt .Vt,t-,Z)dt + v{pt,Vt,t-,£)dBt, , .
dVt = K(pt,Vt, t;Z)dt +  cr(p£, Vt, t;£)dWt, ’

where Vt denotes a vector of latent volatility factors, dBt and dW t denote compatible, 

possibly correlated, Brownian motions, and the drift and diffusions functions are as­

sumed to be sufficiently regular to guarantee the existence of a  unique strong solution 

(see, e.g., Karatzas and Shreve (1997)). Moreover, the parameters, £, are restricted 

to lie within some compact set, E, containing the true parameters of the process, say 

£o- Of course, the dependence of pt on dWt through both Vt and corr(dZ?£, dWt) may
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be redundant. Also, for concreteness, in the subsequent empirical analysis we will 

normalize the unit tim e interval to correspond to one day.

The exact form of the drift function, p(pt, Vt, £;£); is generally irrelevant for the 

consistent estim ation of the parameters entering the diffusion functions. Meanwhile, 

the estim ation of these param eters based on discretely sample observations for the 

Pt process are complicated by the Vt process being latent, and the lack of a closed 

form expression for the corresponding transition density. As noted in the introduc­

tion, this in turn  has spurred the development of several alternative computationally 

demanding estim ation procedures. However, by the theory of quadratic variation

2*  T 12 as [T
P t+ ^ T - t )  -  Pt+sfrT-t) ^  I v{p„V„siS)ds  =  Vt,T, (5.2)

t=l

where Vt)r  denotes for the integrated volatility from time t to T.  Thus, while the 

point-in-tim e volatility, v(p t , Vt, £;f), is generally unobservable, by summing increas­

ingly finer sampled squared high-frequency returns, it is possible to obtain increas­

ingly more accurate estim ates of the integrated volatility of the process. Importantly, 

in the limit the integrated volatility is effectively observable.4

Explicitly treating the integrated volatility as observable, in turn  permits the 

im plem entation of a standard GMM type estim ator for the underlying model param­

eters, by minimizing the weighted distance between the sample moments and the 

corresponding population moments of Vtj  implied by the particular model structure. 

Of course, in practice continuously sampled observations are not available, so that the 

integrated volatility is not actually observable. However, the same GMM estimation 

strategy may be formally justified under the additional assumption, tha t the number 

of observations employed in the construction of the sample moments converges to in-

4Andersen and Bollerslev (1998a) provide simulation evidence in support of this idea, and argue 
for the practical use o f the quadratic variation as a meaningful measure o f the ex-post realized 
volatility.
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finity at a  slower rate  than the almost sure convergence rate of l /2 yV for the quadratic 

variation. The validity of this assum ption is obviously an empirical question.

The next section details the derivation of the first two population moments for a 

particular class of stochastic volatility models. For concreteness, I shall focus on the 

square-root volatility model, or the single factor affine diffusion, analyzed by Heston

(1993) among others. But, the same basic approach employed in the next section 

could in principle be extended to any m ultifactor stochastic volatility processes for 

which the conditional mean and conditional variance of the point-in-time volatility 

have tractable analytical expressions.5 This latter class is quite general, including the 

affine class of stochastic differential equations popularized by Duffie and Kan (1996), 

and Dai and Singleton (2000), as well as the quadratic stochastic volatility class of 

models (see, e.g., Kloeden and Platen (1992)).

5.2.2 Conditioned M om ents o f Integrated Volatility

The square-root volatility model, or scalar affine diffusion, is succinctly defined by,

dpt = n t d t  -1- y / V t d B t ,
dVt =  k{8 -  Vt)dt +  (TyJVtdW t , l j

where Vt is a  scalar latent volatility process. While this first-order parameterization is 

obviously somewhat restrictive, it is nonetheless rich enough to illustrate the general 

idea, and it has in fact been widely used in the literature. In this parameterization, 

0 determines the long-run (unconditional) mean, k is the mean reversion parameter, 

and cr denotes the local variance (volatility-of-volatility) param eter. For the process 

to be well defined, the param eters must satisfy: 6 > 0 (non-negativity), k > 0

0 Although the procedure implemented here hinges on the matching of selected population and 
sample moments for the integrated volatility, in situations where analytical expressions for the 
population moments Vt ,r  are not directly available, these could easily be evaluated by simulations, 
and the underlying parameters estim ated by simulated methods o f moments (Duffie and Singleton 
1993).
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(stationary in mean), and a 2 < '2k6 (stationary in volatility). Note th a t the drift of 

the asset returns, p t, can be any linear or nonlinear function of the state  variables, 

pt , Vt , or even other unobservable factor(s), without impeding the estim ation of the 

stochastic volatility com ponent.

In deriving the conditional moments for the integrated volatility, it is useful to

distinguish between two different information sets the continuous sigma-algebra

=  cr{Vi;s <  t}, generated by the point-in-time volatility process, and the discrete 

sigma-algebra Qt =  cr{Vf_3_i,f_s; s =  0 ,1 ,2 , • • •, oo}, generated by the integrated 

volatility series. Obviously, the coarser filtration is nested in the finer filtration (i.e., 

Qt C Ft)-, and by the Law of Iterated Expectations, E[E{-\Ft)\Qt\ — E(-\Qt)-

C onditional M ean

In deriving the conditional mean for the integrated volatility, it is useful to s tart with 

the conditional mean of the point-in-tim e volatility. In particular, it follows from the 

result in Cox e t al. (19S5a) tha t,

E{V r\F t) =  ar-fV ; + 0T-t,  (5.4)

where cir-t and (3j-t are functions of the structural parameters and the horizon of 

the forecast, T  — t (see Appendix B for details). The second step is to express the 

conditional mean of the integrated volatility as a (linear) function of the point-in-tim e 

volatility by interchanging the integration operators

E {Vt,T \Ft) =  E  ^  V3ds F^j  =  ar- tVt +  6r _t, (5.5)

where ar-t  and br-t  denote other explicit functions of the drift param eters and the 

sampling interval.

Now, by iteratively substitu ting  the above two results, the conditional mean of 

the integrated volatility for the one-day horizon, given the finer information set Ft-,
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is readily expressed as (see Appendix B),

E  (Vt+U+2|.F;) =  o.E +  /?,

where for notational simplicity we om it the subscript for the daily horizon: i.e. a  =  Qi 

and /? =  /?!. Using the Law of Iterated Expectation, the above relationship can be 

conditioned on the coarser information set Qt, yielding

E [ E ( V t+i,t+ 2 \ r t ) I Qt] = E ( V t + u + 2 \gt ) = a E ( Vt , t + i \g t ) + p .  (5.6)

The first order moments for the multi-period integrated volatility may be derived by 

similar reasoning.

Conditional Second M om ent

Analogous to the derivation of the conditional first moment above, it is convenient to 

start from the expression for the conditional variance for the point-in-time volatility. 

Again, following Cox et al. (1985a), we have

£(V r2\T t) =  Var{VT\Ft ) +  {E{yT \Ft)]2 =  CT-t  Vt +  DT. t + [aT. tVt + /?T_t]2, (5.7)

where C r- t  and Dr- t  are functionally dependent on the structural parameters and 

the sampling interval. Now by expressing the conditional variance of the integrated 

volatility as a linear function of the point-in-tim e volatility and by exploiting Ito’s 

Lemma, it is possible to show that

Var{Vt,T\Ft) =  A r_ tVt +  Br-t-, (5.S)

where A r - t  and Br- t  represent other functionals of the parameters (see Appendix B 

for detailed derivations).

Now combining the conditional variance formula in (5.8) and the conditional 

mean formula in (5.5), we can derive the second moment of the integrated volatility
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conditional on the finer information set Tt- In particular, for the one-day horizon 

this takes the form

£ M 3,+ , m  =  V*r(V,,w \F,) + [£(V,,«+1|jr ,)p  =  a X  + (2 ab +  A)V, + (b2 + B)

where we have om itted the “daily” subscript “1” on a, b. A and B  for notational 

convenience. Finally by repeatedly applying the Law of Iterated Expectation on 

different information sets and substituting expressions between integrated volatility 

and point-in-time volatility, it follows tha t

ElE(Vf+ w \r , ) \ g , ]  = £(V,2+1J+J 15,) = H E ( V l , + i m  + /E(V W 1|5,) +  ./, (5.9)

where the functions H,  / ,  and J  are again defined in Appendix B. Corresponding mo­

ment conditions for the squared multi-period integrated volatility follow by analogous 

arguments.

C o n d itio n a l M o m e n t R e s tr ic t io n s

The analytical solutions for the conditional first and second moments in equations 

(5.6) and (5.9), immediately set the stage for the construction of a standard GMM 

type estim ator. O f course, the efficiency of the resulting estim ator defined from these 

equations will depend upon the particular choice of instruments (see Hansen (1985), 

Hansen, Heaton, and Ogaki (19SS), and G allant and Tauchen (1996b) for additional 

discussion and formal results along these lines). In the implementation pursued here, 

we simply augment the two basic moments with their own lag-one and lag-one squared 

counterparts, resulting in the following six moments,

m  =

E [ V t+ Ut+2\Gt} —

£[Vt+i,t+2V t_u|& ] —
£[V?+, IftI -  v?+1,«+3v , - , ll 
E[vt+lMv l u \gt\ -  vl+llWvi,,,

(5.10)
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By construction E [ f t{£o)\Gt] =  0, and the corresponding GMM, or minimum chi- 

square, estim ator is defined by £7- =  a rg m in griO'WgTiZ),  where g r { 0  refers to the 

sample mean of the mom ent conditions, gr{£) = 1/T  ft(€)i and W  denotes 

the asym ptotic covariance m atrix  of gri^o) (Hansen 1982). Under standard regu­

larity conditions, the minimized value of the objective function multiplied by the 

sample size is distributed asym ptotically as a  chi-square distribution with three de­

grees of freedom, which allows for an omnibus test of the overidentifying restrictions. 

Moreover inference concerning the individual parameters is readily available from the 

standard formula for the asym ptotic covariance m atrix, {d f t {€ ) /d£ 'W df t(£) /d£) /T.

The one-period lag in the moment conditions in equation (5.10) implies an MA(1) 

error structure. However, in order to avoid any finite sample problems with the 

sample analogue of W  not being positive definite, in the simulations and the actual 

empirical estim ates reported below, I used a heteroskedasticity and autocorrelation 

consistent robust covariance m atrix  estim ator with a Bartlett-kernel and a lag length 

of five (Newey and West 1987).6 The next section details the results from a Monte 

Carlo study designed to investigate the finite sample performance of this particular 

GMM estimator.

5.3 M onte Carlo Study

One im portant aspect in evaluating econometric methods for estimating continuous 

tim e process concerns their finite sample performance. W ith strong temporal depen­

dence and/or conditional heteroskedasticity in the data  generating process, asymp­

totically sound estimators have been shown to exhibit very slow convergence rates 

(see, e.g., Pritsker (1998)). This section qualifies the small sample efficiency of our 

GMM estimator, along with the resulting omnibus specification test, and Wald based

6I also experimented with other lag lengths. All o f the results were very similar to the ones reported 
here, and are available upon request.
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param eter inference.

5.3.1 Experim ental D esign

Here I present the results for three benchmark specifications. Scenario A (k = 0.03, 

0 =  0.25, a  =  0.10) features a highly persistent volatility process (nearly unit-root); 

Scenario B ( k  = 0.10, 0 =  0.25, a  =  0.10) has a more stationary variance process; 

Scenario C ( k  = 0.10, 0 =  0.25, a  = 0.20) has a higher variance-of-variance and is 

close to the non-stationary region (<x2 >  2k9).

In sim ulating the data, we utilize a first order Euler scheme with 82 artificial 

“five-minute” intervals per day, further partitioning each five-minute interval into 

10 segments.' The quadratic variation formula (5.2) is employed to approximate 

the integrated volatility series. To check the standard “long-span” asymptotics, the 

econometric sample sizes are chosen as T  =  1,000 and T =  4,000. Since the true 

“continuous tim e” record is known inside the simulations, we compare the GMM 

estim ator using the “five-minute” quadratic variation with the corresponding non- 

feasible estim ator based on the true integrated volatility. Lastly, we also compare the 

results for the GMM estim ator with a QML estim ator based on the “daily” point-in- 

tim e volatility assuming the process to be Gaussian.8 Of cause, this la tter estim ator 

is not feasible in practice either. The results are summarized in Tables 5.1-5.3 and 

Figures 5.1 and 5.2.

' Most US financial markets are open between six-and-a-half to seven hours, corresponding to 78-84
five-minute intervals.

8This estim ator is closely related to the ideas in Fisher and Gilles (1996), who propose a Quasi- 
Maximum Likelihood estimator for Affine diffusion process, using closed form solutions for the 
conditional mean and variance.

150

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



www.manaraa.com

5.3.2 Param eter E stim ate and Efficiency

First, the finite sample results not only corroborate the moment conditions derived 

earlier for the integrated volatility, but also indicate that the GMM estim ator fairs

well (if not better) than the other two non-feasible alternatives using “unobserved”

point-in-time volatility or the “continuous tim e” record. The root-mean-squared- 

errors (RMSEs) of the drift param eters, k and 0, decrease roughly at the rate of 

\ f \  as the sample size increases from 1,000 to 4,000 “days”. Meanwhile, the mean- 

reversion param eter k is upward biased, and the long-run mean param eter 0 exhibits 

a small downward bias.

Second, the accuracy of the local variance param eter estim ates is affected by 

both the long-span asymptotics and the fill-in asymptotics. Although the RMSE of 

a  does decrease when the sample size goes from 1,000 to 4,000, the rate is not always 

\/4 . Also, while the drift param eter estim ates are almost unaffected by the fill-in 

asymptotics, the RMSE of a clearly diminishes when the sampling frequency increases 

from “five-minute” to the “continuous tim e” limit. This confirms the theoretical 

arguments that the diffusion param eter can be estim ated exactly with continuous 

sampling (M erton 1980, Lo 1988, Nelson 1992).

Third, when the process is close to a unit-root (Scenario A), the variance param­

eter seems to converge at a faster rate  than  y /T  (Table 5.1 Panel A and Figure 5.1). 

Also when the variance-of-variance param eter is large (Scenario C in Figure 5.1), the 

finite sample biases of the drift param eter estim ates are larger than for the more 

stationary case (Scenario B in Figure 5.1). Basically the GMM estim ator is not able 

to distinguish between a very persistent yet stationary process and a non-stationary, 

near unit-root process in “small” samples.

Lastly, the GMM estimates of the local variance param eter, a.  are systematically 

upward biased in all three scenarios. Interestingly, this bias completely vanishes when
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the true integrated volatility is used in place of the “five-minute” quadratic variation. 

While the measurement error from using the quadratic variation to approxim ate 

the integrated volatility process is averaged out in the first moment condition, the 

second moment condition depends non-linearly on the measurement error. We will 

investigate this issue further in Section 5.3.4.

In term s of relative efficiency, the GMM estim ator using the “five-minute” real­

ized volatility actually performs better than the non-feasible QML estimator using 

the unobservable point-in-time volatility for the drift parameters in all three scenar­

ios, and better for the variance param eter in all but the stationary scenario. The 

middle rows in Table 5.1 suggest th a t the RMSEs of the GMM estim ator using the 

true integrated volatility process are much smaller than those of the QML estim ator. 

However, going to the “continuous tim e” limit does not necessarily improve the ef­

ficiencies of the GMM drift param eters, but it does increase the convergence rate of 

the diffusion parameter.

5.3.3 Statistical Inference

In practice, inference concerning the individual model parameters and the overall 

specification of the model will have to be based on the standard GMM type test statis­

tics discussed in Section 5.2.2. In this regard, the t-statistics for the drift param eters 

in Figure 5.1 clearly indicate th a t the GMM estim ator based on the “five-minute” 

quadratic variation is close to norm al for both 1,000 and 4,000 “daily” sample sizes 

analyzed here. Meanwhile for the  diffusion param eter, the use of “five-minute” re­

alized volatility in the GMM estim ation gives rise to a systematic upward bias in 

the t-statistics. This is consistent w ith the earlier explanation of the non-dissipating

measurement error in the second moment condition.9

9The corresponding t-tests for the non-feasible QML estimator based on the point-in-time volatil­
ity are generally much more distorted, while the t-tests for the GMM estimates using the true 
integrated volatility are all extremely close to normal. These results are available upon request.
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Turning to Figure 5.2 and the GMM tests of overidentifying restrictions, it follows 

tha t except for the near unit-root case (Scenario A in Figure 5.2), the test performs 

very well. Moreover, the slight over-rejection and under-rejection biases largely van­

ishes as the sample size increases from 1,000 to 4,000.10

5.3.4 M easurement Error Adjustm ent

By construction the quadratic variation based on the simulated ”five-minute” returns 

provides an unbiased estim ate for the true integrated volatility. At the same time, the 

squared quadratic variation for any fixed sampling interval yields a biased estim ate 

of the true squared integrated volatility. Consequently, while the linear expectations 

operator washes out the measurement errors in the first conditional moment and the 

corresponding two augmented moments in equation (5.10), the three moment condi­

tions involving the squared quadratic variation will entail a non-zero measurement 

error.11 Although the exact form of the measurement error is not known, it follows 

by the almost sure convergence of the quadratic variation, that the expectation of 

the squared error term is bounded by the local maximum of the continuous local 

martingale process (Karatzas and Shreve 1997, P ro tter 1992). In order to conve­

niently approximate this term, we simply included an additive nuisance parameter, 

7 , in each of the three second order moment conditions, replacing the squared “five- 

m inute” quadratic variation, Vf+it+2, by V t+u+2 +  7-

Not surprisingly, from the results reported in Table 5.4 and Figure 5.3, the pa­

ram eter estimates for the two drift param eters and the corresponding t-statistics are

10Overrejection biases of GMM omnibus tests are widely reported in the literature (Andersen and 
Sorenson 1996, Hansen et al. 1996), whereas underrejection biases often occur when lag instru­
ments are used to form the moment conditions (Tauchen 1986).

n Andersen and Bollerslev (1998a) provide some limited simulation evidence on the size of this 
measurement error as a function o f the sampling frequency. Andersen, Bollerslev, Diebold, and 
Labys (2000c) and Bai, Russell, and Tiao (1999) discuss practical considerations related to the 
inherent market microstructure frictions and the choice o f the sampling frequency with actual 
high-frequency data.
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largely unaffected by the estim ation of this additional nuisance parameter. More im­

portant, the pervasive finite sample biases for the local variance param eter estim ates 

have completely disappeared.12 Moreover, the rejection frequencies for the GMM 

specification test for the overidentifying restrictions appear marginally closer to their 

nominal sizes. Thus, all in all, the inclusion of a simple additive correction term  for 

the squared quadratic variation has effectively eliminated the only notable statistical 

bias in the procedure. O f course, it is possible that more advanced measurement er­

ror adjustm ent procedures could result in further improvements, especially for more 

complicated models. However, for the square-root volatility diffusion in equation 

(•5.3), the GMM estim ation procedure proposed here works very well in realistic 

fi.xed-interval finite sam ple settings.

5.4 Empirical Illustration

This section provides an empirical illustration of the new estim ation procedure using 

actual high-frequency date. For ex positional purposes, we will focus on the estim a­

tion results for the sim ple scalar affine diffusion analyzed in the previous two sections. 

To illustrate the applicability of the procedure across different markets and institu­

tional arrangem ents, we present the results for two separate data  sets: spot foreign 

exchange rates, and Japanese equity index returns. In line with the simulations in 

the preceding section, we partition the trading day for each of the markets into five- 

minute intervals, incorporating an additive nuisance param eter to correct the inherent 

measurement error in the resulting five-minute quadratic variation measures.

12Meanwhile, the RMSEs for a  have increased somewhat.
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5.4.1 D ata Description

The da ta  for the foreign exchange m arket were obtained from Olsen&Associates in 

Zurich, Switzerland, and consists of continuously recorded five-minute returns for 

the Deutsche M ark/U .S. Dollar (D M /$) and Japanese Yen/U.S. Dollar (Yen/S) spot 

exchange rates. The sample for the exchange rates spans the period from December 

1, 1986 through December 1, 1996. After removing missing data, weekends, fixed 

holidays, and other calendar effects, as detailed in Andersen et al. (1999b), we are 

left with a total of 2,44-5 trading days, each of which consists of 2SS five-minute 

returns over the 24-hour trading cycle.

The intraday data  for the Nikkei 225 composite stock m arket index were provided 

by Nihon Keizei Shimbun Inc. The five-minute returns for the Nikkei 225 covers the 

period from January 2, 1994 through December 31, 1997. Excluding days on which 

the Japanese equity m arket was closed results in a total of 9S4 trading days. The 

Tokyo Stock Exchange opens at 9:00 a.m ., closes for lunch from 11:00 to 12:30, and 

closes for the day a t 15:00 p.m.. O m itting the first five-minute interval of the day 

associated with the special Itayose batched trading process at the opening, leaves us 

with 53 five-minute returns per day. In contrast to the very actively traded foreign 

exchange rates, the five-minute returns for the Nikkei 225 cash index is plagued by 

im portant non-synchronous trading effects (see, e.g., Lo and MacKinlay (1990) and 

Chan, Chan, and Karolyi (1991), for a discussion of non-synchronous trading effects 

in equity index returns). While the resulting autocorrelation in the  high-frequency 

returns does not formally affect the continuous record asym ptotics underlying the 

GMM estim ator, any mean dependencies in the discretely sampled returns will sys­

tem atically bias the quadratic variation as an estim ate for the true latent integrated 

volatility. In order to minimize this bias we pre-vvhitened the returns by a first order 

autoregressive model, treating the residuals from this model as the actual five-minute
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return series.13 For a  more detailed discussion of the pertinent institutional arrange­

ments and the pre-vvhitened five-minute Nikkei 225 returns, we refer to Andersen, 

Bollerslev, and Cai (2000a).

Next we transform the three five-minute return series into daily tim e series of 

integrated volatilities, as approxim ated by the quadratic variations in equation (5.2). 

Table 5.5 provides the standard set of summary statistics for each series. The means 

of the integrated volatility for the two exchange rates imply an annualized standard 

deviation of approximately 11.5 percent, whereas the annualized volatility for the 

Japanese stock market equals 14.6 percent.14 The standard deviations of the in­

tegrated volatilities are close to the mean for all three markets. The higher order 

moments indicate extremely heavy tails and, most notably in the case of the Yen/S 

spot exchange rate, im portant skewness to the right. These distributional features 

are confirmed by visual inspection of the time series plots in Figure 5.5. Each of the 

panels also reveals a high degree of serial correlation in the integrated volatility se­

ries. The next subsection presents the estimation results from the stochastic volatility 

model in equation (5.3) explicitly designed to capture this volatility clustering effect.

5.4.2 Estim ation R esults

Before proceeding to the actual estim ation results, we caution tha t the scalar volatil­

ity diffusion in equation (5.3) is too simplistic to fully account for the complex dy­

namic dependencies in the high-frequency return series. In particular, there are 

sound theoretical reasons to expect there to be at least two factors affecting the 

exchange rates (Bansal 1997). Also, a number of recent studies have argued for

13The estimated AR(1) coefficient for the raw Nikkei 225 five-minute returns equals 0.1429. Details 
concerning the model estimates based on the un-adjusted five-minute Nikkei 225 returns are 
available on request. The resulting daily integrated volatility series is slightly smoother, and the 
parameter estimates are marginally lower in level, persistence, and variance.

14The annualized standard deviation is obtained by multiplying the mean o f the daily integrated 
volatility by 250 and taking the square-root.
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the empirical relevance of including m ultiple factors and /or jum p components when 

modeling equity index returns (Chacko and Viceira 1999, Andersen, Benzoni, and 

Lund 1999a, Chernov et al. 1999). Moreover, the model in equation (5.3) does not 

incorporate the strong periodic dependencies in the volatility within the day docu­

mented in several recent studies (Andersen and Bollerslev 1997).10 In spite of these 

deficiencies, we feel tha t the square-root stochastic volatility model is rich enough to 

offer a first meaningful empirical illustration of the applicability of the new estim ation 

procedure.

The param eter estim ates for the three series are reported in Table 5.4.16 W ith the 

exception of the slightly higher values for <r, the estim ates are almost identical to the 

ones reported here. As expected the estim ates for the long-run means, or 9. are all 

fairly close to the sample means for the three integrated volatility series reported in 

Table 5.5. Also, not surprisingly, the estim ates of the variance-of-variance param eter, 

or <7, have the largest standard errors among all of the parameters. Meanwhile, the 

estim ated mean reversion parameters, k . are on the high side relative to the values 

reported in the extant literature using more complicated discrete tim e ARCH and 

stochastic volatility type formulations. Even though the GMM omnibus test only 

rejects the model for the DM/S exchange rate, the one-factor model is obviously an 

oversimplification of the true dynamic dependencies for all three markets. However, 

from an overall perspective, the estim ation results in Table 5.6 are generally in line 

with the simulation evidence reported in the previous section, and clearly suggest 

tha t the new estim ation procedure could effectively be employed in the empirical 

estim ation of more complicated continuous tim e diffusions.

15Interestingly, the forecasting result in Andersen and Bollerslev (1998b) and Andersen et al. (2000a) 
suggest that the influences of the intraday periodicities are effectively eliminated in the daily 
integrated volatility measures utilized in the GMM estimation.

15Details regarding the parameter estimates without the additive measurement error term are avail­
able upon request.
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5.5 Concluding Remarks

Exploiting closed form analytic expressions for the conditional moments of integrated 

volatility coupled with highly accurate empirical quadratic variation measures con­

structed from high-frequency data, we proposed a new class of GMM-type estimators 

for stochastic volatility diffusions. In contrast to other computationally demanding 

estim ation procedures routinely used in the  literature, such as the simulation based 

EMM and MCMC methods, the GMM estim ator developed here is very easy to im­

plement, requiring only the solution to a  standard non-linear optimization problem. 

The Monte Carlo evidence shows that the procedure results in highly accurate pa­

ram eter estim ates and reliable statistical inferences in realistic finite samples. In 

implementing the new estim ator with actual five-minute rates of return, my results 

confirm prior evidence in the literature concerning the existence of strong volatility 

clustering at the inter-daily level.

It would be interesting to extend the estim ator developed here to more com­

plicated continuous tim e jump-diffusion and multi-factor diffusion processes. More 

ambitious empirical applications might also entail the estimation of multivariate dif­

fusions. which in turn would require vector versions of the integrated volatility and 

quadratic variation measures exploited here. Another interesting extension, would 

be to use the distributional features of the  integrated volatility in pricing financial 

options, although this would necessitate additional assumptions about the price of 

volatility risk. I leave further work along these lines for future research.

5.6 Tables and Figures
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T ab le  5.1: Monte Carlo Experim ent Panel A
The table reports the simulation results for the GMM and QML procedures discussed 
in the main text applied in estim ating the  stochastic volatility diffusion in equation 
(5.3). The total number of Monte Carlo replications is 1,000

True Value Mean Median RMSE
GMM with Quadratic Variation from High-Frequency Return

T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T = 4000
K = 0.03 0.0352 0.0313 0.0340 0.0310 0.0130 0.0054
e = 0.25 0.2430 0.2487 0.2355 0.2460 0.0523 0.0258
a = 0.10 0.1016 0.1030 0.1018 0.1030 0.0080 0.0050

GMM with Integrated Volatility
T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T =  4000

K = 0.03 0.0382 0.0323 0.0374 0.0319 0.0139 0.0055
e = 0.25 0.2338 0.2456 0.2273 0.2437 0.0521 0.0257
a = 0.10 0.0992 0.0999 0.0992 0.0998 0.0044 0.0020

QML with Point-in-Time Volatility
T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T = 4000

K = 0.03 0.0446 0.0360 0.0434 0.0361 0.0195 0.0095
8 = 0.25 0.2327 0.2441 0.2271 0.2410 0.0537 0.0290
cr = 0.10 0.1012 0.1014 0.0999 0.1011 0.0095 0.0052
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T able  5.2: Monte Carlo Experim ent Panel B
The table reports the simulation results for the GMM and QML procedures discussed 
in the  main tex t applied in estim ating the stochastic volatility diffusion in equation 
(5.3). The total number of Monte Carlo replications is 1,000

True Value Mean Median RMSE
GMM with Quadratic Variation from High-Frequency Return

T =  1000 T = 4000 T =  1000 T =  4000 T = 1000 T = 4000
K = 0.10 0.1057 0.1023 0.1048 0.1016 0.0214 0.0100
e =  0.25 0.2478 0.2491 0.2474 0.2489 0.0158 0.0078
cr =  0.10 0.1059 0.1073 0.1061 0.1072 0.0093 0.0082

GMM with Integrated Volatility
T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T =  4000

K = 0.10 0.1102 0.1032 0.1090 0.1027 0.0214 0.0091
e =  0.25 0.2460 0.2486 0.2459 0.2483 0.0163 0.0078

II o
 

►—k
 

O 0.0994 0.1000 0.0995 0.0998 0.0042 0.0020
QML with Point-in-Time Volatility

T = 1000 T = 4000 T =  1000 T =  4000 T = 1000 T =  4000
K =  0.10 0.1136 0.1040 0.1134 0.1048 0.0259 0.0138
e =  0.25 0.2497 0.2517 0.2480 0.2510 0.0196 0.0097
cr =  0.10 0.0967 0.0956 0.0967 0.0958 0.0059 0.0054
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T ab le  5.3: Monte Carlo Experim ent Panel C
The table reports the simulation results for the GMM and QML procedures discussed 
in the main text applied in estim ating the stochastic volatility diffusion in equation 
(5.3). The total num ber of M onte Carlo replications is 1,000

True Value Mean Median RMSE
GMM with Quadratic Variation from High-Frequency Return

T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T =  4000
K = 0.10 0.1113 0.1035 0.1091 0.1035 0.0253 0.0111
e = 0.25 0.2389 0.2468 0.2364 0.2463 0.0326 0.0158
a = 0.20 0.2031 0.2051 0.2030 0.2049 0.0122 0.0078

GMM with Integrated Volatility
T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T =  4000

K = 0.10 0.1153 0.1048 0.1131 0.1047 0.0270 0.0114
9 = 0.25 0.2346 0.2455 0.2319 0.2449 0.0341 0.0160
a = 0.20 0.1984 0.1997 0.1982 0.1995 0.0097 0.0046

QML with Point-in-Time Volatility
T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T =  4000

K = 0.10 0.1257 0.1093 0.1242 0.1107 0.0390 0.0208
9 = 0.25 0.2459 0.2537 0.2432 0.2520 0.0336 0.0199
a = 0.20 0.1977 0.1960 0.1966 0.1958 0.0135 0.0084
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T ab le  5.4: Monte Carlo Experim ent with Measurement Error Correction 
The table reports the GMM estim ation results obtained by including an additive mea­
surement error correction term , 7 , in the moment conditions involving the squared 
integrated volatility. The RMSE column for 7 gives the sample standard deviation 
across the 1,000 Monte Carlo replications.

True Value Mean Median RMSE
Scenario A: GMM with Quadratic Variation

T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T =  4000
k =  0.03 0.0364 0.0317 0.0354 0.0315 0.0138 0.0056
e =  0.25 0/2456 0.2491 0/2384 0/2464 0.0520 0.0257
a = 0.10 0.0909 0.0994 0.0905 0.0983 0.0230 0.0127

7 0.0007 0.0004 0.0006 0.0004 0.0008 0.0005
Scenario B: GMM with Quadratic Variation

T =  1000 T =  4000 T =  1000 T =  4000 T =  1000 T =  4000
K = 0.10 0.1067 0.1027 0.1061 0.1023 0.0219 0.0104
e =  0.25 0.2489 0.2494 0.2484 0.2492 0.0157 0.0078
(7 =  0.10 0.0990 0.1049 0.0986 0.1046 0.0214 0.0121

7 0.0007 0.0004 0.0006 0.0003 0.0009 0.0005
Scenario C: GMM with Quadratic Variation

T =  1000 T :=  4000 T =  1000 T =  4000 T =  1000 T =  4000
K = 0.10 0.1133 0.1042 0.1109 0.1043 0.0274 0.0119
e =  0.25 0/2435 0/2481 0/2400 0/2473 0.0314 0.0157
a =  0/20 0.1893 0.1999 0.1884 0.1987 0.0303 0.0162

7 0.0017 0.0010 0.0015 0.0009 0.0019 0.0013
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T ab le  5.5: Summary Statistics for Daily Integrated Volatility 
The daily integrated volatilities are approxim ated by the quadratic variations con­
structed from nve-minute returns.

Statistics DM/S Rate Yen/S Rate Nikkei 225
Mean 0.5290 0.5383 0.8511
Std. Dev. 0.4S39 0.5217 0.7757
Skewness • 3.7083 5.5713 3.0203
Kurtosis 24.0505 66.6545 18.1780
Minimum 0.0517 0.0280 0.0309
5% Quant. 0.13S4 0.13S2 0.1494
25% Quant. 0.2542 0.2533 0.3681
Medium 0.3990 0.4008 0.6479
75% Quant. 0.6252 0.6317 1.0782
95% Quant. 1.3450 1.3598 2.2491
Maximum 5.2453 10.0971 7.5651
Num. of Obs. 2445 2445 984

T ab le  5.6: GMM Estim ation of Stochastic Volatility Model 
The GMM estim ator and the specification test are described in Section 5.2. The daily 
integrated volatilities are approxim ated by the quadratic variations from five-minute 
returns. The variance-covariance m atrix is estim ated using a Newey-West weighting 
scheme with a lag-length of five.

Param eter DM/S Rate Yen/S Rate Nikkei 225
Mean Reversion k 0.1464 0.2472 0.1236
(Standard Error) (0.03S7) (0.0463) (0.0492)
Long-run Mean 0 0.5172 0.5190 0.8312
(Standard Error) (0.0342) (0.0240) (0.0950)
Local Variance cr 0.57S9 0.4242 0.1909
(Standard Error) (0.0580) (0.1804) (0.3992)

GMM Specification Test
Chi-Square (2) 12.1476 3.6182 0.8040
p-Value 0.0023 0.1638 0.6690
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F ig u re  5.1: T-test Distributions
- t-statistics with 1000 observations; 41---- ” t-statistics with 4000 observations;

Normal (0,1) reference density.
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Figure 5.3: T-test Distributions with M easurement Error Correction
“----- ” t-statistics with 1000 observations: “---- ” t-statistics w ith 4000 observations;

Normal (0,1) reference density.
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A ppendix A  

Technical Derivations in Chapter 3 

A .l  Martingale Pricing Result

Consider a simple homogeneous economy with free lending and borrowing at a “risk 

free” interest rate. Assume that the representative agent has a strictly increasing 

concave utility function {/(•) and seeks to maximize his life-time expected utility by 

optim ally choosing between consumption, saving, and portfolio investment, subject to 

the wealth constraint. Further assume th a t the m arket is complete and competitive, 

no transaction costs or short-sale restrictions. Under technical differentiable and 

measurable conditions (Cox et al. 19S5b), there exists a unique equilibrium in such 

an exchange economy or a production economy with constant return to scale. The 

optim al solution is a bundle of stochastic consumption, investments, interest rates 

and asset returns. In equilibrium, the interest rate and the risky asset return must 

adjust simultaneously with the investment portfolio, until all the expected returns 

weighted by the marginal utility equal the risk-free rate.

A. 1.1 Sufficient Condition for No-Arbitrage

The m arket price P(t)  of a risky asset without dividend must satisfy the equilibrium 

first order condition

P(t) = E t

169
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Economic equilibrium is the sufficient condition for no-arbitrage (Duffie 1996), which 

implies the existence of a state price deflater Tr(t) such that

P(t)  =  E t
S i ™

, for any s > t. (A. 1)

This condition is fully justified by assuming a strictly  increasing concave utility func­

tion; hence a positive stochastic discount factor exists up to a constant scale. Now our 

task is simply to characterize the discount factor ~ { t), without having to fully specify 

the underlying economic structure. In order to do so, the consumption-saving deci­

sion m ust be separable from the portfolio investment decision. Typically the utility 

function is assumed to be a constant relative risk aversion (CRRA), which guarantees 

that the optimal investment decision is independent of wealth and is only dependent 

on its own return relative to the risk-free rate.

A. 1.2 N ecessary Condition for No-Arbitrage

The necessary condition for no-arbitrage is the existence of market-price-of-risk pro­

cesses for both diffusion and jum p risks. Intuitively, if any risk in a jump-diffusion 

economy is appropriately priced, there would exists no chance to make a profit from 

a zero-investment portfolio. Therefore, the stochastic discount factor must take the 

following form (M erton 1976, Bates 1996, Das 199S):

=  - r ( t ) d t  -  Aw {t)dW {t) -  Aj(t)[dN(p{-)t) -  p(-)dt], (A.2)
MO

where A w (0 is the unit risk premium of diffusion and Aj ( t )  the unit risk premium of 

jum p. The compensated Poisson process [dN(p(-)t) — p(-)dt] is a martingale (Karatzas 

and Shreve 1997). The functional forms of the m arket prices of risks Ajy(0 and Aj ( t ) .  

although not unique, must be proportional to the instantaneous standard deviation 

of the diffusion and jum p risks. Once the pure diffusion risk and the net jum p risk are
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properly priced, the expected return of the pricing kernel is nothing but the risk-free

rate

A .1.3 A  Characterization o f Bond Price

To ease the burden of notations, we suppress the tim e subscript t in those intermediate 

steps which do not cause confusions. Also, the jum p-rate p and jump-size J  can be 

state-dependent, w ithout further notice. The price P{t) of a discount bond, as a 

function of the stochastic interest rate, also assumes a jump-diffusion process

where pp(t) , o-p(t), and Jp(t)  are respectively the drift, diffusion, and jump-size func-

form of the bond price.

Define a new process M (t) = n ( t ) P ( t ), which is a martingale due to the equilib­

rium first-order condition (A .l); hence

i.e., the instantaneous bond return should be equal to the risk-free rate plus risk 

premiums. The expectation operator is taken with respect to the left continuous 

filtration J-p. The to ta l diffusion risk prem ium  of the bond return is the product

=  p P(t)dt + aP(t)dW (t)  +  JP(t)dN(p(-)t), (A.3)

tions, which are dependent on the underlying short-rate process and the functional

M (t)  =  £ t[M (s)], for any s > t .

Since M{t)  is defined as a  martingale, it must have zero drift p m {^) — 0. Applying the 

Generalized Ito’s Lemma (Kushner 1967, Ikeda and W atanabe 1981, Merton 1971, 

Lo 19S8), one can show that

/i P( t ) =  r(t)  +  Aw{t)crp{t) +  p(-)(Aj(t) -  1 )E[JP(t)}, (A.4)
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of the unit price of risk Aw{t) with the to tal diffusion risk crp(L). The total jum p 

risk premium of the bond return is the product of trend-adjusted unit price of jum p 

risk is (Aj ( t )  — 1) with the to tal expected jum p impact p{-)E[Jp(t)\. This result is a 

simple extension of Vasicek (1977) and Cox et al. (1985a).

A .2 Characterization of Conditional Moment

The analytical solution to conditional moments are given in Section 3.3.1 as

Et{RT) =  e ^ - ^ R t  +  eTAA - 1{e~tA -  e~TA)g,

which is fully characterized by the fundamental m atrix A  and the forcing function g. 

M o d e l 1: S q u a re -R o o t D iffusion .

A

—  K 0 0 0 k0
2 k0 +  a 2 - 2 k 0 0 0

0 3 k0 +  3cr2 - 3 k 0
9 =

0

.  0 0 4k0 +  6cr2 —4k .  0

M o d e l 2: S q u a re -R o o t D iffusion  w ith  In d e p e n d e n t  J u m p  T e rm .

A  =

— k  0 0 0
2k0 +  a 2 + 2pE.,{J) - 2 k  0 0
3p E j ( J 2) 3k0 +  3cr2 + 3 p E j(J )  - 3 k  0
4 pEj(.J3) 6 p E j (J 2) 4k9 + 6cr2 + 4 p E j(J )  —4 k .

9 =

p E j (J )  +  K0 
p E A J 2) 
p E j ( P )
p E j { J l )

M o d e l 3: S q u a re -R o o t D iffu sion  w ith  S ta te -D e p e n d e n t  J u m p -R a te

A =

— k  + piEj(J) 0
2 k0 + a 2 + 2 p0E j ( J )  + PlE j ( J 2) - 2 k  +  2 PlE j ( J )
3p0E j ( J 2) +  PlE j (  J 3) 3 k6 +  3a2 +  3 p0E j ( J )  +  3PlE j ( J 2)
4p0E j ( J 3) + PlEj(J*)  QpoEj(J2) +  4PlEj{ .P)
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0 0
0 0
—3/c +  3p\ E j ( J )  0
And + 6<r2 +  Ap0E j ( J )  +  6PlE j ( J 2) -4/c +  4/>1£ j ( J )  J

9 =

Po E j ( J )  +  n d
P o E j ( J 2) 
P o E j ( J 3) 
P o E A J * )

M odel 4: S q uare-R oot D iffusion  w ith  S ta te-D ep en d en t Ju m p -S ize .

— K — p 0 0 0 k O -f- pJo
2 k O  +  a 2 —2k — p 0 0 pJo
0 3/c0 -(- 3<t2 —3k — p 0 ? 9 —

p Jq
.  0 0 A k O +  6<r2 i<a.1£1 . p l 0
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Appendix B

Technical Derivations in Chapter 5

B .l Conditional M om ents of Integrated Volatili­
ties

B . l . l  Conditional M ean o f Integrated Volatility

or T  — t =  1, by a =  £ (1 — e K) and 6 =  0 — £(1  — e *). The above derivation 

explicitly uses the conditional m ean of the point-in-time volatility

E(VT\Ft) =  Vte -< T~^ +  0 ( l  -  e~<T- ^ )  = a T- tVt +  f a - t ,  (B.2)

where a r - t  and (3r~t are also functions of the drift parameters and the tim e difference 

(T  — /). Again for T  — t =  1, we define a  =  e~K and /3 = 6 (1 — e-,c).

174

Because of the linear drift specification of the stochastic volatility, the conditional 

mean of the integrated volatility can be shown as a linear function of the point-in-time 

volatility

T
j f  E{Va\Ft)ds

Vt -  ( l  -  e-" (T- £>) +  6{T -  t) -  -  ( l  -  e - K(T~t})
K ' K *

ax-tV t + b r - t . (B.l)

where ax-t  and bx-t are functions of the drift parameters and the tim e difference 

(T  — t). For notational simplicity we denote the parameters for the daily horizon,
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Focusing on the one-day horizon and using E  (V£+i,t+ 2 \ F t + \ )  =  aFJ+i + b and 

E ( V t+ i \ !F t )  =  ctV t +  /?, it follows that

E [ E ( V t+l,t+2\Ft+l)\Ft] = aE(Vt+l\Ft) + b

= a(aVt +(3) + b 

=  a[E  — 6] +  a(3 +  6,

which simplifies as

E  (Vf+i,t+2|^t) =  o t E  ( |F t )  +  0 -

Finally, by the Law of Iterated Expectations,

E  [ E  (Vt+i.t+al-?70 IQt] =  E  ( V t+ i , t+ 2 \G t )  =  q E  (V£,£+i|C/£) +  /?. (B.3)

B .1.2 Conditional Variance o f Integrated Volatility

By definition V£,r  =  V3ds, and from equation (B .l) E  (V£,r |Ft) =  ar-tVt +  &r-t- 

The stochastic differential equation (SDE) for E  (V£,r|.F£) rnay therefore be generated 

as a function of Vt by applying Ito’s formula to the affine diffusion in equation (5.3),1

d E  (V£,r | ^ )  =  [ar - tK{0 -  Vt ) +  Vt +  dt + a T . t<Ty/vtd W t , 

which may be further simplified as

dE  (V£, r | ^ )  =  - V td t  + aT- t<ry/vtdW t. (B.4)

Now fix the upper limit T, and let the lower limit t be tim e varying. The Ito integral 

implied by SDE (B.4) then takes the form

E  (V r.r l^ r)  =  E  (V£tr |^ i )  +  j \ - V . ) d s  +  J *  aT. a<rJvadWa.

1The simple version o f Ito’s Lemma for a sm ooth function f ( V t , t , T )  €  C 2 of a diffusion process 
Vt states that

df (Vt , t , T )  =  [ fv ( Vc, t , T ) fi(Vt , t ) + f t (Vt , t , T ) + ^ f v v ( V t , t , T ) v 2(Vt , t ) } d t + f v (Vt , t , T ) u ( V t , t ) d W t , 

where and u(Vt , t) are the drift and diffusion functions defining the Vt process.
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However, E  ( V t ,t \ F t ) =  0> which implies tha t

T*
V t,T - E ( V t,T \^t) =  I  a T - aa y / v ad W s .

Using standard arguments in stochastic calculus, it follows from the substitution of 

equation (B.2) tha t

V a r { V t ,T \ F )  =  E [ ( V t , T - E ( V t , T  \ F ) ) 2 \ F t)

E{ \ f t ar, a*JvadWa

j \ 2T_3<T2E(Va\Ft)ds 

j  a l_aa2[aa- tVt + f3a- t]d.s

— A T - t V t  + B r - t , (B.5)

where

A r - t

B r - t

K 2

K2

<j
K2

I K
_ _  2e~K{T~t)(T  - t ) -----
x tx

0{T - t ) ( l  + 2e"K(T- £)) -  —  ( l  -  e- 't(T- J)) +  ( l  -

0(T  -  t) ( l  +  2 e -^ T- £)) +  +  5) ( e-"<r-0 _  i)

In particular, the conditional variance of the integrated volatility is a linear function 

of the point-in-tim e volatility. It follows also from Cox et al. (19S-5a) and equation 

(B.2) above tha t,

E (V -} \F t ) =  V a r { V r \ F t) +  [£(V 't|^ ,!]3

=  K , -  (e-«<r - ‘) -  +  t l  (!  _  J +  [aT_ tVt +  ^
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— C-T-tVt +  D r - t  +  a \ - t ^ t  +  &T-t +  ^ a T - t0 T -t%

=  a ^ _ t Vt~ +  [C r-t  +  2Q7--t/?r-t]K +  [D r-t  +  Pr-tl  (B.6)

where

C r- t  =  £  (e - '“r - ‘> -  e - 2̂ ) )  ,

D t - ‘ -  C r ( 1 - ^ |T" 1) 2 -

Focusing on the one-day horizon and using the conditional variance formula (B.5), 

Var{Vt,t+]\J't) =  AVt +  B, and the corresponding one-day conditional mean formula 

(B .i), E {V t,t+\\Ft) =  aVt + b, implies tha t

£ (V t2,t+1|Ft) =  V ar(V t,t+l\Ft) + [E(Vt,t+l\Ft)\2 =  a2Vt2 + (2ab+A)Vt + (b2 + B) (B.7)

Leading the arguments by one period and applying the Law of Iterated Expectation, 

immediately yields

E [E {V ^ u+2\ f t^ ) \ T t) =  a2E ( V 2+l \Ft) + (2ab +  A )E (V t+l\Ft) +  (b2 +  B).

Now substitute E (V t+ i \ f t )  by (B.2) and E { V 2+ l\!Ft) by (B.6), and reversely substitute 

out V 2 by (B.7) and Vt by (B .l) , it is clear that

£(V?+m+2I f t )  = a-[a2Vt2 + (C +  2aP)Vt + (D  +  (32)}

+(2ab + A)(aVt + (3) + (b2 + B)

=  a 2 a2 V 2 + [a2{C +  2a,3) +  a(2ab +  A)]Vt

-f-[a2(D  +  @2) +  j3(2ab +  A) +  (b2 +  B)\

=  c ? [ E (V l+l\Ft) -  (2ab + A)Vt -  (b2 +  B )]

+[a2{C + 2a 3)  +  a(2ab + A)]Vt 

+[a2(D  +  /?2) +  {3(2ab + A) + (b2 +  B)]

177

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



www.manaraa.com

=  a 2E(Vf<t+l\Ft)

+[a2(C  +  2a/?) +  (a  -  a 2)(2a6 +  A)]}-[E{Vt^ t) -  b)
a

+[a2(D + /?2) +  (3(2ab +  A) +  (1 -  a 2)(b2 + B)]

=  a 2 E ( V l +l\ f t)

+ - [ a 2(C  +  2a/?) + (a  -  a 2)(2a& +  A )\E (V t,t+l\Ft) 
a

— ̂ ■[a2{C +  2a/?) +  (a  -  a 2)(2a& + A)]

+[a2(D  +  /?2) +  (3{2ab +  A)  +  (1 -  a 2)(62 +  B)\ (B.8)

Lastly, applying the Law of Iterated Expectations to (B.S) and changing the infor­

m ation set, we have

E[E(Vf+l ,*+2 \Ft)\Gt] =  E(Vf+l ,t+2\Gt)

= <*2E {V lt+l\Qt)

+ —[a2(C  +  2a/?) +  (a  — a 2)(2a6 +  A)\E(Vt,t+i\Gt)
a

——[a2(C +  2a/?) +  (a  -  a 2)(2a6 +  A)] 
a

+[a2(D +  /?2) +  (3(2ab+ A) (1 — a 2)(62 +  B)\

= H E ( V l +l\gt) + ^ W . t + i |  St) +  j ,  (B.9)

where H  =  a 2, /  =  l /a [a 2(C -I- 2a/?) +  (a  — a 2)(2a6+  A)], and J  =  —6/a[a2(C' -f 

2a./?) +  (a  -  a 2)(2ab +  A)] +  [a2(£> +  /?2) +  (3(2ab +  A) +  (1 -  a 2)(&2 +  B)\.
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